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Weak gravity in the Dvali-Gabadadze-Porrati braneworld model

Takahiro Tanaka*
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

~Received 9 June 2003; published 13 January 2004!

We analyze weak gravity in the braneworld model proposed by Dvali, Gabadadze, and Porrati, in which the
unperturbed background spacetime is given by a five-dimensional Minkowski bulk with a brane which has an
induced Einstein-Hilbert term. This model has a critical length scaler c . Naively, we expect that four-
dimensional general relativity~4D GR! is approximately recovered at a scale belowr c . However, the simple
linear perturbation does not work in this regime. Only recently has the mechanism to recover 4D GR been
clarified under the restriction to spherically symmetric configurations, and the leading correction to 4D GR
been derived. Here, we develop an alternative formulation which can handle more general perturbations. We
also generalize the model by adding a bulk cosmological constant and the brane tension.

DOI: 10.1103/PhysRevD.69.024001 PACS number~s!: 04.50.1h

I. INTRODUCTION

A braneworld model, whose gravity behaves as four di-
mensional at a short distance scale but shows a higher di-
mensional nature at larger distances, was proposed by Dvali,
Gabadadze, and Porrati~DGP! @1#. In this model, the brane,
on which the fields of the standard model are confined, has
an induced Einstein-Hilbert term@2,3#. This model has vari-
ous cosmologically interesting features@4–11#. Particularly
in the model with a five-dimensional bulk, an interesting
cosmological solution was found, in which the accelerated
expansion of the Universe at a late epoch is realized without
introducing the cosmological constant@7#. Based on this
model, a novel mechanism that dilutes the cosmological con-
stant was also proposed@11#.

Although we mentioned above that gravity in this model
at short distances is expected to behave as four dimensional,
it is not so transparent if the model actually mimics four-
dimensional general relativity~4D GR!. The linear analysis
of this model shows that the tensor structure of the induced
metric perturbations takes a five-dimensional form even at
short distance@1#. The situation is analogous to the case of
models with massive gravitons. In this case the deviation
from 4D GR does not vanish even in the massless limit,
which is known as the van Dam–Veltoman–Zakharov dis-
continuity @12–14#. In this context, the possibility that the
4D GR is recovered by nonlinear effect was suggested in
Ref. @15#. There have been many discussions about this issue
@16#. In particular, we have a clear statement that the discon-
tinuity disappears when we introduce the cosmological con-
stant@17,18#. Although the analysis with a cosmological con-
stant is quite suggestive, the discontinuity is absent only
when the limit is taken, keeping the length scale determined
by the cosmological constant much smaller than the Comp-
ton wavelength of the massive graviton. The length scale
determined by the cosmological constant must be longer than
the Hubble horizon size. Hence, the recovery of 4D GR can-
not be proven by introducing a negligibly small cosmologi-

cal constant as far as the graviton mass is not completely
negligibly small.

Also specialized to the context of the five-dimensional
DGP model, there are various works aiming at answering the
question whether 4D GR is recovered at short distances or
not, and much evidence that indicates the recovery of 4D GR
were reported@19–23#. It was shown that the evolution equa-
tion for a homogeneous isotropic universe becomes identical
to that for 4D GR when the Hubble expansion rate is much
larger than the inverse of the critical length scale,r c

21 @19#.
In Refs.@21,22# ~also see Ref.@20#! it was clearly shown that
the linear analysis breaks down at a scale shorter than
(r c

2r g)1/3 since the brane bending becomes nonlinear there.
Further, a consistent form of a black hole metric induced on
the brane was presented. An approximate black hole solution
including the bulk was constructed under the restriction to
spherically symmetric configurations@21#. The same paper
also gave the leading order correction to 4D GR, which is
potentially observable by the future development of preci-
sion measurements of our solar system@24,23#. The results
in Ref. @21# were extended to the case with the background
of an expanding universe@23#.

In this paper, we develop an alternative formalism which
can handle general perturbations in a weak gravity regime.
To handle general perturbations, we restrict our consideration
to the case that the unperturbed metric on the brane is given
by Minkowski space-time. We also make a further generali-
zation to the model that also takes into account the bulk
cosmological constant and the brane tension balanced with it.
~Such a generalized DGP model was discussed before in
Refs.@25–28#.! We confirm the recovery of 4D GR at short
distances and rederive the leading order correction to it.

II. SETUP

The model that we consider is defined by the five-
dimensional action

S5
M4

2

4r c
E d5xA2gS R(5)1

12

,2D
1E d4xA2g(4)S M4

2

2
R(4)2

3M4
2

r c,
1LmatterD , ~2.1!
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where M4 , r c , and , are constants.R(5) and R(4) are, re-
spectively, the curvature scalars corresponding to the five-
dimensional metricgmn and the four-dimensional onegmn

(4)

induced on the brane. Here, we added both the bulk cosmo-
logical constant and the brane tension terms to the original
DGP model. They are tuned to admit the Minkowski brane as
a vacuum solution. The model is reduced to the original one
by setting,→`. The unperturbed background geometry is
given by five-dimensional anti-de Sitter space-time,

ds25gab
(0)dxadxb5dy21gmn~y!dxmdxn

5dy21e22y/,hmndxmdxn, ~2.2!

with a brane located aty50, where aZ2 symmetry is im-
posed. Herehmn is a four-dimensional Minkowski metric.

III. SEMINONLINEAR PERTURBATIONS

We follow the method of Ref.@29# introduced for the
purpose of analyzing weak gravity in the Randall-Sundrum
model@30#. We prepare two coordinate systems. In the coor-
dinates$xa%, the gauge is chosen so that the metric pertur-
bationshab can be easily computed in the five-dimensional
bulk. That is, we use the Randall-Sundrum gauge,

h5a50, hm
m50, hm,n

n 50. ~3.1!

In this paper the fifth direction is the direction of extra di-
mension. The Greek and Latin indices represent four- and
five-dimensional coordinates, respectively. The other coordi-
nate system$x̄a% satisfies the Gaussian normal conditions

h̄5a50, ~3.2!

and also keeps the location of the brane unperturbed atȳ

50. Under the coordinate transformationxa5 x̄a2ja( x̄),
the metric perturbation transforms as

h̄ab5hab@ x̄2j~ x̄!#1S 2gab,5
(0) j51

1

2
gab,55

(0) ~j5!22••• D
2$j ,a

c @gcb
(0)~ x̄2j!1hcb~ x̄2j!#1~a↔b!%

1@gcd
(0)~ x̄2j!1hcd~ x̄2j!#j ,a

c j ,b
d . ~3.3!

The argument of the variables is supposed to bex̄ unless
otherwise is specified, and ‘‘,a’’ denotes a differentiation with
respect tox̄a.

The conditions that the$00% component and$0m% com-
ponents are zero in both coordinates provide equations for
the gauge parameters, which are solved up to second order as

j55 ĵ51 j
~2!

5,

jm5
,

2
~hmn2gmn!ĵ ,n

5 1 ĵm1 j
~2!

m, ~3.4!

whereĵ5( x̄r) and ĵm( x̄r) are the values of the gauge param-
eters evaluated on the brane, and

j
~2!

55E
0

ȳ
dȳgmnĵ ,m

5 ĵ ,n
5 ,

~3.5!

j
~2!

m5E
0

ȳ
dȳgmrF ĵ ,n

5 S h̄r
n1

2

,
dr

nĵ5D2j ,r
s ĵ ,s

5 2 j
~2!

,r
5 G .

We assume the following order counting:

ĵ ,m
5 &e,

ĵ5

,
,
ĵ5

r c
,ĵ ,m

r ,h̄ m
r uy¯50&e2, ~3.6!

and keep the terms up toO(e2). Heree2 is the order of the
Newton potentialF52 1

2 h̄00. Later we will verify the con-
sistency of this order counting. Then, the transformation for
$mn% components reduces to

h̄mn~ x̄!5hmn„x2 j̄~ x̄!…1dhmn , ~3.7!

with

dhmn5
2

,
gmnj52jm,n2jn,m1 ĵ ,m

5 ĵ ,n
5 . ~3.8!

Hereafter, the Greek indices are lowered or raised by the
metric gmn .

The brane location is given byȳ50. Hence in the$xa%
coordinates the brane is bent. For simplicity, we impose the

harmonic gauge condition,h̄ m,n
n 5

1
2

h̄,m for the induced met-

ric on the brane. To second order ine, this condition gives

ĵm5h21F2
2

,
ĵ ,m

5 1~h ĵ5!ĵ ,m
5 G . ~3.9!

From this relation, we find that the assumptionĵ ,n
m 5O(e2) is

consistent if the assumed order ofĵ5 is correct. Substituting
Eq. ~3.9!, the gauge transformationdhmn evaluated on the
brane becomes

dhmnu ȳ505
2

,
gmnĵ 5

1h21F4

,
ĵ ,mn

5 12grsĵ ,rm
5 ĵ ,sn

5 22~h ĵ 5!ĵ ,mn
5 G .
~3.10!

Then, the trace of the induced metric is also evaluated as

h̄5
12

,
ĵ512h21@gmngrsĵ ,mr

5 ĵ ,ns
5 2~h ĵ 5!2#.

~3.11!

Next we consider the junction condition. After a straight-
forward calculation, we can show
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~] ȳ12,21!h̄mn5~] ȳ12,21!hmn~ x̄2j!12ĵ ,mn
5

1
2

,
Jmn ~at ȳ50!, ~3.12!

with

Jmnªgmngrsĵ ,r
5 ĵ ,s

5 1 ĵ ,m
5 ĵ ,n

5 . ~3.13!

Using this relation, the junction condition becomes

Tmn2
1

2
gmnT1

M4
2

2
hh̄mn

52
M4

2

2r c
F ~] ȳ12,21!hmn~ x̄2j!u ȳ5012ĵ ,mn

5

1
2Jmn

,
1gmnS h ĵ51

J

, D G . ~3.14!

The equation that determines the brane bending is ob-
tained from the trace of the above equation as

h21
1

M4
2 T5

h̄

2
1

3

r c
S ĵ51h21

J

, D
5

3

r c*
ĵ51h21~gmngrsĵ ,mr

5 ĵ ,ns
5 2~h ĵ 5!2!

1
3

r c,
h21J, ~3.15!

where we have introducedr c*ª@(1/r c)1(2/,)#21. We can
neglect the last term on the right hand side of Eq.~3.15!
because it is always higher order compared with the first
term. The left hand side is something like the Newton poten-
tial F, hence we assume it to beO(e2). Outside the matter
distribution with the total massm, the left hand side can be
expressed as'r g /r , wherer gªm/4pM4

2. At large scale,r
*(r gr c

2)1/3, the first term on the right hand side dominates,
while at small scale,r &(r gr c

2)1/3, the second term domi-
nates. Therefore we have

O~e2!5maxS U ĵ5

r c*
U,u ĵ ,m

5 u2D . ~3.16!

Thus we find that our assumption as to the order counting for
ĵ5 is justified.

IV. MECHANISM FOR RECOVERING
FOUR-DIMENSIONAL GENERAL RELATIVITY

The remaining task is to evaluate (] ȳ12,21)hmn„x̄

2j( x̄)…u ȳ50. Here we need to solve the bulk field equations.
Different from the R-S case, we solve the bulk equations
with the Dirichlet boundary condition~3.7!. Here, we note
that the location of the brane is not a straight sheet in the
coordinates in the R-S gauge$xa%.

We can give the general solution for the bulk field equa-
tions as a superposition of homogeneous mode solutions
with a purely outgoing boundary condition:

hmn~x!5E Hmn~p!eipmxm
K2~p,ey/,!d4p

5E Hmn~p!eipm( x̄m2jm( x̄))K2~p,eȳ2j5( x̄)/,!d4p,

~4.1!

whereK2(p,) is the modified Bessel function andHmn is the
expansion coefficient. The coefficientHmn is to be deter-
mined so as to satisfy the Dirichlet boundary condition

hmnu ȳ50~ x̄!5E Hmn~p!eipm( x̄m2jm( x̄))K2~p,e2 ĵ5( x̄)/,!d4p.

~4.2!

If we are allowed to approximate the above expression by
setting ja50, we have h̃mn(p)ª(2p)24*d4x̄e2 iprx̄r

3hmn( x̄)5Hmn(p), and therefore we have

~2p!24E d4x̄e2 iprx̄r
~] ȳ12,21!hmnu ȳ50~ x̄!

52
pK1~p, !

K2~p, !
h̃mn~p!52

pK1~p, !

K2~p, !
~h! mn2dh̃mn!.

~4.3!

We think that the errors caused by this naive approximation
are not large, although any rigorous proof is not ready yet. If
the leading errors are simply proportional tohmnj, we can
neglect them since they are of higher order ine. Such a
naive expansion with respect toj will be justified for small
p. But for large p, we will not be allowed to expand the
combinationpj in the exponent. However, as we will see
below, even the leading correction to the gravitational poten-
tial coming from the contribution of this part is suppressed to
be irrelevantly small at small scaler &r c . Hence, the errors
due to this naive approximation can be crucial only if this
approximation significantly underestimate the magnitude of
(] ȳ12,21)hmnu ȳ50, which is quite unlikely.

Using Eq. ~4.3!, the junction condition~3.14! is written
down explicitly as

h! mn2
2

M4
2DS T̃mn2

1

2
gmnT̃D

5DF S 2
p2

r c
1

2pK1(p,)

r c,K2(p,) Dgmnj̃̂ 52
2

r c
pmpnj̃̂ 5

1
pK1(p,)

r cK2(p,)
dh̃mn

(2)1
1

r c, S J̃mn1
1

2
gmnJ̃ D G

~at ȳ50!, ~4.4!

where
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D5
1

p21
pK1~p, !

r cK2~p, !

~4.5!

and

dhmn
(2)5h21@2grsĵ ,rm

5 ĵ ,sn
5 22~h ĵ 5!ĵ ,mn

5 #. ~4.6!

Here the quantity with̃ represents the Fourier coefficient
of the corresponding variable as before. We show that in the
square brackets on the right hand side of Eq.~4.4! the first
term gives the dominant contribution. We can drop the last
two terms simply because they are always higher order ine
compared with the first term. The second term is irrelevant
since it can be eliminated by a four-dimensional gauge trans-
formation. As a result, the equation that determines the met-
ric induced on the braneh̄mn is reduced to the one for the
linear theory. The only difference is in the equation that de-
termines the brane bending@Eq. ~3.15!#.

The order of magnitude of the first term on the right hand
side of Eq.~3.15! is estimated asĵ5/r c;F1/2r /r c at small
scale, and hence it is suppressed by the factorF21/2r /r c
compared with the Newton potentialF. The leading behav-
ior of the induced metric is therefore determined by setting
the left hand side of Eq.~4.4! to zero. Thus we conclude that
4D GR is recovered by taking into account the nonlinear
brane bending for weak gravity at small scaler &(r c

2r g)1/3. If
we take the limitr c→`, all length scales come into this
regime. Hence, we have confirmed the absence of van Dam–
Veltman–Zakharov discontinuity. As first pointed out in Ref.
@21#, however, because of the factorF21/2 the leading order
deviation from 4D GR at small scale is less strongly sup-
pressed than the naively expected suppressionr /r c .

At large scale, this term becomes more and more impor-
tant. Forr *(r c

2r g)1/3, we have

j̃̂ 5'2
r c* T̃

3M4
2p2

. ~4.7!

This is nothing but the result for the linearized case. In Sec.
V, we discuss the regime where the linear theory is valid.
After that, in the succeeding section, we discuss the leading
order correction to the 4D GR at short distance scale assum-
ing static and spherically symmetric configurations.

V. LINEAR REGIME

In this section we consider perturbations at large scaler
@(r c

2r g)1/3, where the linear theory is valid. Substituting Eq.
~4.7! into Eq. ~4.4!, we obtain

h! mn'
2

M4
2DS T̃mn2

1

2
agmnT̃D , ~5.1!

with

a5

r c1
,

3 S 11
1

,p

K1~p, !

K2~p, ! D
r c1

,

2

. ~5.2!

First we look at the behavior of the propagatorD, which
was already discussed in Ref.@28#. When we consider the
length scale much smaller than,, we have

D→ 1

p21r c
21p

~p,@1!. ~5.3!

At a length scale smaller thanr c(prc@1), the propagatorD
behaves as that for a four dimensional field. On the other
hand, at the intermediate scale betweenr c and , (r c@p21

@,), the propagator behaves as that for a five-dimensional
field. When the length scale is much larger than,,
K1(p,)/K2(p,) goes top,/2. Thus we have

D→ 2r c

~,12r c!p
2

~p,!1!. ~5.4!

Hence again the propagatorD behaves as a four-dimensional
field, but Newton’s constant is not given by 2M4

22 but by
2M4

22/(11,/2r c).
Next we turn to the tensor structure specified bya. For a

four-dimensional massless graviton we havea51, while a
5 2

3 for the case of a massive graviton. Forp,@1, we have

a→
11

,

3r c

11
,

2r c

. ~5.5!

We havea→1 for ,!r c , while a→2/3 for ,!r c . On the
other hand, forp,!1, we havea→1 irrespective of the
ratio between, and r c .

The results are summarized in Fig. 1. Whenr *,, the 4D
GR is realized by the Randall-Sundrum mechanism. The ef-
fective Planck mass differs fromM4 in this case. On the
other hand, whenr &r c , the gravity becomes four dimen-
sional again, but the tensor structure differs from 4D GR.

FIG. 1. Summary of the results of the linear analysis, which is
valid whenr @(r c

2r g)1/3. The horizontal axis represents the length
scale. The raws labeledD anda, respectively, explain the property
of the propagatorD and the indicator of the tensor structurea.
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VI. STATIC SPHERICAL SYMMETRIC
NONRELATIVISTIC STAR

We consider a static spherical symmetric nonrelativistic
star. Assuming that the energy momentum tensor is domi-
nated by the$00% componentT005r, we neglect the effect
of pressure when we solve the metric perturbation. First we
solve the nonlinear equation forĵ5 @Eq. ~3.15!#. Under the
present assumptions, Eq.~3.15! is simplified as

2
1

M4
2 r5

1

r 2 ] r S 3r 2

r c*
ĵ ,r

5 22r ~ ĵ ,r
5 !2D . ~6.1!

This equation can be immediately integrated once, and we
obtain

2~ ĵ ,r
5 !22

3r

r c*
ĵ ,r

5 2
r g~r !

r
50, ~6.2!

where
r g~r !5

1

M4
2E

0

r

drr 2r. ~6.3!

Outside the star, we haver g(r )5r g5m/4pM4
2. Solving the

above equation with respect toĵ ,r
5 , we have

ĵ55E drF 3r

4r c*
2

1

4
AS 3r

r c*
D 2

1
8r g~r !

r
G . ~6.4!

Here we have chosen the signature in front of the square root
imposing the condition thatĵ ,r

5 does not become large atr
→`. The other branch with the ‘‘1’’ sign is outside the
scope of the present formalism since we have assumed a
Minkowski brane background. At small scale, this expression
reduces toĵ5'2*drAr g(r )/2r . Outside the matter distribu-
tion, we simply haveĵ552A2rr g. Hence, the correction to
the Newton potential is given by

dF'Arr g

2r c
2, ~6.5!

which recovers the result obtained in Ref.@21#.

VII. CONCLUSION

We developed a formalism to calculate the metric pertur-
bations induced by the matter localized on the brane in the
generalized DGP model, in which the bulk cosmological
constant and the brane tension terms are added. Here we
clarified the mechanism for the disappearing van Dam–
Veltman–Zakharov discontinuity in this model. In our ap-
proach, the crucial point was to take into account a part of
the second order perturbations of the brane bending. This
method was largely motivated by recent works@31,32#. Our
scheme almost completely controls the order of magnitude of
the neglected higher order correction terms. In this sense, we
think that this work gives an alternative sufficiently satisfac-
tory proof of the absence of the van Dam–Veltman–
Zakharov discontinuity in the DGP model. Under the restric-
tion to the static and spherically symmetric source, we
confirmed that our formulation correctly reproduces the lead-
ing order correction to 4D GR at short distances obtained in
Ref. @21#.

Our new formulation has an advantage compared with
previous works on the following point. Here basic equations
were perturbatively derived without assuming static or
spherical symmetric configurations. Analyzing solutions of
these equations in general cases is not so simple because we
need to partly take into account the second order perturba-
tion. The equations derived here, however, will be still useful
to understand how 4D GR is approximately recovered in
general and to study dynamics of a weakly self-gravitating
system such as a star binary.
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