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Weak gravity in the Dvali-Gabadadze-Porrati braneworld model

Takahiro Tanaka
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
(Received 9 June 2003; published 13 January 2004

We analyze weak gravity in the braneworld model proposed by Dvali, Gabadadze, and Porrati, in which the
unperturbed background spacetime is given by a five-dimensional Minkowski bulk with a brane which has an
induced Einstein-Hilbert term. This model has a critical length scale Naively, we expect that four-
dimensional general relativitt4D GR) is approximately recovered at a scale belqw However, the simple
linear perturbation does not work in this regime. Only recently has the mechanism to recover 4D GR been
clarified under the restriction to spherically symmetric configurations, and the leading correction to 4D GR
been derived. Here, we develop an alternative formulation which can handle more general perturbations. We
also generalize the model by adding a bulk cosmological constant and the brane tension.

DOI: 10.1103/PhysRevD.69.024001 PACS nuntder04.50:+h

I. INTRODUCTION cal constant as far as the graviton mass is not completely
negligibly small.
A braneworld model, whose gravity behaves as four di- Also specialized to the context of the five-dimensional

mensional at a short distance scale but shows a higher dRGP model, there are various works aiming at answering the

mensional nature at larger distances, was proposed by Dvaﬂ,uestion whether 4D GR is recovered at short distances or

Gabadadze, and PorrdBGP) [1]. In this model, the brane not, and much evidence that indicates the recovery of 4D GR

. ) . were reportedi19—-23. It was shown that the evolution equa-
on which the fields of the standard model are confined, haﬁon for a homogeneous isotropic universe becomes identical

an induced Einstein-Hilbert teri2,3]. This model has vari- 14 that for 4D GR when the Hubble expansion rate is much
ous cosmologically interesting featurg$—11. Particularly larger than the inverse of the critical length scal[e? [19].
in the model with a five-dimensional bulk, an interesting |, Refs.[21,27] (also see Ref20]) it was clearly shown that
cosmological solution was found, in which the acceleratec{he linear ana|ysis breaks down at a scale shorter than
expansion of the Universe at a late epoch is realized WithOL@'grg)ll3 since the brane bending becomes nonlinear there.
introducing the cosmological constafif]. Based on this Further, a consistent form of a black hole metric induced on
model, a novel mechanism that dilutes the cosmological cornthe brane was presented. An approximate black hole solution
stant was also proposédi1]. including the bulk was constructed under the restriction to
Although we mentioned above that gravity in this modelSpherically symmetric configuratiof®1]. The same paper

at short distances is expected to behave as four dimension&IS0 gave the leading order correction to 4D GR, which is
it is not so transparent if the model actually mimics four- Potentially observable by the future development of preci-
dimensional general relativitthD GR). The linear analysis S'°O" measurements of our solar systg#,23. The results

of this model shows that the tensor structure of the inducet Ref. [21] were expended to the case with the background
) ) . . _ f an expanding univerge3].
metric perturbations takes a five-dimensional form even at |, this paper, we develop an alternative formalism which

short distanc¢1]. The situation is analogous to the case ofcan handle general perturbations in a weak gravity regime.
models with massive gravitons. In this case the deviationro handle general perturbations, we restrict our consideration
from 4D GR does not vanish even in the massless limitto the case that the unperturbed metric on the brane is given
which is known as the van Dam-Veltoman—Zakharov dis-by Minkowski space-time. We also make a further generali-
continuity [12—14. In this context, the possibility that the zation to the model that also takes into account the bulk
4D GR is recovered by nonlinear effect was suggested igosmological constant and the brane tension balanced with it.
Ref.[15]. There have been many discussions about this issuéuch a generalized DGP model was discussed before in
[16]. In particular, we have a clear statement that the disconRefs.[25—28.) We confirm the recovery of 4D GR at short
tinuity disappears when we introduce the cosmological condistances and rederive the leading order correction to it.
stant[17,1§. Although the analysis with a cosmological con-

stant is quite suggestive, the discontinuity is absent only IIl. SETUP

when the limit is taken, keeping the length scale determined The model that we consider is defined by the five-
by the cosmological constant much smaller than the Compgimensional action

ton wavelength of the massive graviton. The length scale

determined by the cosmological constant must be longer than Mﬁ 12
the Hubble horizon size. Hence, the recovery of 4D GR can- S= 4—f d®x\—g| R®+ -
not be proven by introducing a negligibly small cosmologi- Fe ¢
M2 3M3
+ | d*xy—-g®| —R®— +L , (2.1
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whereMy, r¢, and¢ are constantsR® andR™ are, re-  whereZ5(x?) and*(x”) are the values of the gauge param-
spectively, the curvature scalars corresponding to the fivesters evaluated on the brane, and

dimensional metrigg,, and the four-dimensional ong()

induced on the brane. Here, we added both the bulk cosmo- % (v — .5 -5

logical constant and the brane tension terms to the original §7= fo dyy*€” ,&",

DGP model. They are tuned to admit the Minkowski brane as (3.5
a vacuum solution. The model is reduced to the original one '

by setting¢ —o. The unperturbed background geometry is <2>M y — ol 35 [T 2 s . a5 D
given by five-dimensional anti-de Sitter space-time, Eh= OdW E N 56,78 =6, 8,767,
ds?=g{Qdx*dx"=dy?+ y,,,(y)dx“dx” We assume the following order counting:
=dy*+e ¥y, dx dx", (2.2 3 5
Ese -, 8,00, = (3.6
with a brane located at=0, where aZ, symmetry is im- o €l om "|y °

posed. Herey,,, is a four-dimensional Minkowski metric. and keep the terms up ©(e?). Here é? is the order of the

Newton potentiakb = — zhg,. Later we will verify the con-

sistency of this order counting. Then, the transformation for
We follow the method of Ref[29] introduced for the {uv} components reduces to

purpose of analyzing weak gravity in the Randall-Sundrum _

model[30]. We prepare two coordinate systems. In the coor- h(X)=h,,(x=&(x))+oh,,, 3.7

dinates{x®}, the gauge is chosen so that the metric pertur-

bationsh,, can be easily computed in the five-dimensionalith

bulk. That is, we use the Randall-Sundrum gauge,

I1l. SEMINONLINEAR PERTURBATIONS

2 e
o, =7y, =&, ,— &, ,+E,E,. (3.9
hsa=0, h /=0, h},=0. (3.0 s a e

wv

In this paper the fifth direction is the direction of extra di- Hereatiter, the Greek indices are lowered or raised by the

mension. The Greek and Latin indices represent four- and"etrc Y- o — ] .
five-dimensional coordinates, respectively. The other coordi- The brane location is given by=0. Hence in the[x"}

nate Systen{;ﬁ} satisfies the Gaussian normal conditions coordinates the brane is bent. For simplicity, we impose the

_ 1
harmonic gauge conditioih, VW=§h,# for the induced met-

hg,= 2
sa=0, (3.2 ric on the brane. To second orderén this condition gives

and also keeps the location of the brane un_perturb_eﬁ at R 2. e s
=0. Under the coordinate transformatiofi=x2—£3(x), §u =077 = 7€, (M) 3.9
the metric perturbation transforms as

From this relation, we find that the assumptifi= O(€?) is

Hab: hab[f_ g(f)]Jr _gg%}5§5+ %%‘355(55)2_ o consistent if the assumed order%_f’fis correct. Substituting
Eqg. (3.9, the gauge transformatiosh,,, evaluated on the

(€98 (x= &)+ hey(x— &)1+ (a—b)} brane becomes

— — 2
+[98 (X &)+ heg(x— §)1€5E5, - B3 oo 7E°
The argument of the variables is supposed toxbenless 4% o35 45 ~5 25
otherwise is specified, and,” denotes a differentiation with +0 Zg,uﬁ 29778 L€ 2(LE)E N, |-
respect tax@. 31
The conditions that th¢00} component andO0u} com- (3.10

ponents are zero in both coordinates provide equations fofhen the trace of the induced metric is also evaluated as
the gauge parameters, which are solved up to second order as

— 12, . N
h= & +207 [y y7&, &%,,— (O8],
(3.11
(2)

¢ A . . . o .
B (v A un\EE L Fny gn 3.4 Next we consider the junction condition. After a straight-
¢ (7 YEL T £, 34 forward calculation, we can show

@
E=+ £°,
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-\ - . 35
(dy+2¢~Hh,,=(d+2¢ " Hh,,(x—=§)+28,

2 _
+?E’“’ (at y=0), (3.12

with
B =Y, Y EE + 8, (3.13

Using this relation, the junction condition becomes

M3
2

T~ zwa-ﬁ- Oh,,

2
__4
2r.

Z:W

¢

(dy+2€ Hh,,(x= =0+ 28,

f—f

+ D$5+%

(3.19

YV

The equation that determines the brane bending is Obéetting £=0

tained from the trace of the above equation as

3. aE o N
SFEFO N yE, 8, (D8
c

I

3 ot 3.1
+q ' (3.19
where we have introduced :=[(1/r.)+(2/¢)]"*. We can

neglect the last term on the right hand side of E15

because it is always higher order compared with the firs

term. The left hand side is something like the Newton poten
tial ®, hence we assume it to I2(e?). Outside the matter
distribution with the total masm, the left hand side can be
expressed asrg/r, wherergzzm/47rM§. At large scaley
=(rgr2)*3 the first term on the right hand side dominates
while at small scaler=(ryr2)* the second term domi-
nates. Therefore we have

35
&
re

(3.16

0(ez)=max< ,|&?M|2).

Thus we find that our assumption as to the order counting for

&5 is justified.
IV. MECHANISM FOR RECOVERING
FOUR-DIMENSIONAL GENERAL RELATIVITY

The remaining task is to evaluatedyf-2¢ )h,,(x
—&(x))|y—o. Here we need to solve the bulk field equations.

PHYSICAL REVIEW D 69, 024001 (2004

We can give the general solution for the bulk field equa-
tions as a superposition of homogeneous mode solutions
with a purely outgoing boundary condition:

h,.(X)= f H,(p)ePKy(pee¥()d*p

- f H(p) PR € 0DK (p ey~ €091 g,
4.1

whereK,(p¢) is the modified Bessel function arid,,, is the
expansion coefficient. The coefficiefit,, is to be deter-
mined so as to satisfy the Dirichlet boundary condition

huuly=o(X) = f M, (p)ePul~E0DK ,(pee 7091 gdp,
(4.2

If we are allowed to approximate the above e@ressi_on by
) , we have h,,(p):=(2m) *fd*xe P’
xh,,(x)=H,,(p), and therefore we have

(27) "4 J d%—ipip(aw 207 Hh 5= 0(X)

Ki(pf) =
h,w(p)=—p 1(pf)

 pKy(pO)
B Kopo) "

] —oh
Ka(pt)

)% p,v)-

4.3

We think that the errors caused by this naive approximation
are not large, although any rigorous proof is not ready yet. If
the leading errors are simply proportionallig, ¢, we can
neglect them since they are of higher orderein Such a
haive expansion with respect gowill be justified for small
p. But for largep, we will not be allowed to expand the
combinationpé¢ in the exponent. However, as we will see
below, even the leading correction to the gravitational poten-
tial coming from the contribution of this part is suppressed to
be irrelevantly small at small scatesr.. Hence, the errors
due to this naive approximation can be crucial only if this
approximation significantly underestimate the magnitude of
(0y+2¢"Yh,,|y=o, which is quite unlikely.

Using Eq.(4.3), the junction condition3.14) is written
down explicitly as

Different from the R-S case, we solve the bulk equations

with the Dirichlet boundary conditioi3.7). Here, we note

that the location of the brane is not a straight sheet in the

coordinates in the R-S gaudg®}.

02400

= 2 ~ ~
uv M_‘le T,uv_z‘y,uvT>
2
B pc  2pKi(pf) %o 2 =
‘DK—K roORy(p0) | Turt T T PPt
pKl(pe) = (2) 1 = 1 =
rRo(p0) Tl | T 2T
(aty=0), (4.4)
where

1-3
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1 4D 4D
D=——"— (45) D 4D 5D M=M;(1+t/2r,) D 4D M=M, (1+¢2r)
. PKa(p0) S P N e
—_— +13r, 2A1+3r/0)
rcKa(pt) @ zr) 1 . @ 02 1
L »- 1 » 7
T, f ¢ r

c

and

o L FIG. 1. Summary of the results of the linear analysis, which is
5hEL2V): D’1[27/’”57‘_;#5,5(,;2(555)5,%]- (4.6 valid whenr>(r?r)*3 The horizontal axis represents the length
scale. The raws labelef and «, respectively, explain the property

Here the quantity with represents the Fourier coefficient of the propagatoD and the indicator of the tensor structure

of the corresponding variable as before. We show that in the

square brackets on the right hand side of Eg4) the first - ¢ 14 1 Kl(M))

term gives the dominant contribution. We can drop the last € 3 p Ky(pt)

two terms simply because they are always higher order in a= 7 . (5.2
compared with the first term. The second term is irrelevant et

since it can be eliminated by a four-dimensional gauge trans-
formation. As a result, the equation that determines the met-
ric induced on the brank,,, is reduced to the one for the ~ First we look at the behavior of the propagafarwhich
linear theory. The only difference is in the equation that deWas already discussed in R¢28]. When we consider the
termines the brane bendifigg. (3.15]. length scale much smaller th@n we have

The order of magnitude of the first term on the right hand

side of Eq.(3.19 is estimated ag®/r.~® % /r, at small 1

scale, and hence it is suppressed by the fadtor/r/r, D_’ﬁ (pt>1). (5.3
compared with the Newton potentid. The leading behav- P=rfe P

ior of the induced metric is therefore determined by setting

the left hand side of Eq4.4) to zero. Thus we conclude that At a length scale smaller than(pr.>1), the propagatoP

4D GR is recovered by taking into account the nonlineatbehaves as that for a four dimensional field. On the other
brane bending for weak gravity at small scete(r?r )¥3 If ~ hand, at the intermediate scale betwegrand ¢ (r;>p~*

we take the limitr.—o, all length scales come into this >¢), the propagator behaves as that for a five-dimensional
regime. Hence, we have confirmed the absence of van Damfield. When the length scale is much larger thdn
Veltman-Zakharov discontinuity. As first pointed out in Ref. K1(p€)/K;(p¢) goes top€/2. Thus we have

[21], however, because of the facwr Y2 the leading order

deviation from 4D GR at small scale is less strongly sup- 2
pressed than the naively expected suppression — —°2 (p€<l). (5.9
At large scale, this term becomes more and more impor- (€+2ro)p

tant. Forr=(rZr )" we have
Hence again the propagatbrbehaves as a four-dimensional
rfr field, but Newton’s constant is not given bMZ but by
4.7 2M 2+ e02ry).
Next we turn to the tensor structure specifieddayFor a

o ) . ) four-dimensional massless graviton we hawve 1, while «
This is nOthIng but the result for the linearized case. In SeCE% for the case of a massive graviton_ Fﬂﬁ'>l, we have

V, we discuss the regime where the linear theory is valid.
After that, in the succeeding section, we discuss the leading

B~ .
3Mjp?

order correction to the 4D GR at short distance scale assum- 1+ i

ing static and spherically symmetric configurations. 3re
a— 7 (5.5

1+ —

V. LINEAR REGIME 2r

In this section we consider perturbations at large scale

>(r2r )3 where the linear theory is valid. Substituting Eg. We havea—1 for {<r., while a—2/3 for {<r.. On the

(4.7) into Eq. (4.4), we obtain other hand, forpf<1, we havea—1 irrespective of the
ratio betweer? andr..
3 o 1 B T_he res_ults are summarized in Fig. 1. Whea€,_ the 4D
h,,~ WD( T~ EO‘VWT)’ (5.2 GR_ls realized by the R_andaII—Sundr.um mechanlsm. The ef-
4 fective Planck mass differs froriv, in this case. On the

other hand, whem=r., the gravity becomes four dimen-
with sional again, but the tensor structure differs from 4D GR.

024001-4
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VI. STATIC SPHERICAL SYMMETRIC VII. CONCLUSION

NONRELATIVISTIC STAR . .
We developed a formalism to calculate the metric pertur-

We consider a static spherical symmetric nonrelativistichations induced by the matter localized on the brane in the
star. Assuming that the energy momentum tensor is domigeneralized DGP model, in which the bulk cosmological
nated by the[00; componentTy=p, we neglect the effect constant and the brane tension terms are added. Here we
of pressure when we solve theAmetric perturbation. First We|arified the mechanism for the disappearing van Dam—
solve the nonlinear equation f@ [Eq. (3.15]. Under the  Veltman—Zakharov discontinuity in this model. In our ap-
present assumptions, E@.15 is simplified as proach, the crucial point was to take into account a part of

the second order perturbations of the brane bending. This
_ (6.1)  Method was largely motivated by recent wofR4,32. Our
scheme almost completely controls the order of magnitude of
the neglected higher order correction terms. In this sense, we
think that this work gives an alternative sufficiently satisfac-

1 1 [3r2, R
- M_ﬁp: r—zﬁr(gfﬁ—zr(fi)z

This equation can be immediately integrated once, and w

obtain tory proof of the absence of the van Dam-Veltman—

2(85)%— i”gs _ @:0 6.2 Zakharov discontinuity in the DGP model. Under the restric-

S S ' tion to the static and spherically symmetric source, we

h confirmed that our formulation correctly reproduces the lead-
where

3ar 1 (Sr)z 8ry(r)
- +
4

* T
arg

I'e

1 ing order correction to 4D GR at short distances obtained in
rg(r)zM—iJ’odrr p. (6.3 Ref. [21].
Our new formulation has an advantage compared with
Outside the star, we ha\r%(r)zrgzmmwMﬁ. Solving the  previous works on the following point. Here basic equations
above equation with respect &, we have were perturbatively derived without assuming static or
' spherical symmetric configurations. Analyzing solutions of
R these equations in general cases is not so simple because we
&= f dr . (6.4  need to partly take into account the second order perturba-
tion. The equations derived here, however, will be still useful
Here we have chosen the signature in front of the square rodp Understand how 4D GR is approximately recovered in
. . L ~5 general and to study dynamics of a weakly self-gravitating
imposing the condition tha¢”, does not become large at svstem such as a star binar
—oo, The other branch with the +” sign is outside the y Y-
scope of the present formalism since we have assumed a
Minkowski brane background. At small scale, this expression
reduces t@°~ —Jdryrg(r)/2r. Outside the matter distribu-
tion, we simply havet®= — V2rr4. Hence, the correction to
the Newton potential is given by
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