518 research outputs found
Contiguous 3d and 4f magnetism: towards strongly correlated 3d electrons in YbFe2Al10
We present magnetization, specific heat, and 27Al NMR investigations on
YbFe2Al10 over a wide range in temperature and magnetic field. The magnetic
susceptibility at low temperatures is strongly enhanced at weak magnetic
fields, accompanied by a ln(T0/T) divergence of the low-T specific heat
coefficient in zero field, which indicates a ground state of correlated
electrons. From our hard X-ray photo emission spectroscopy (HAXPES) study, the
Yb valence at 50 K is evaluated to be 2.38. The system displays valence
fluctuating behavior in the low to intermediate temperature range, whereas
above 400 K, Yb3+ carries a full and stable moment, and Fe carries a moment of
about 3.1 mB. The enhanced value of the Sommerfeld Wilson ratio and the dynamic
scaling of spin-lattice relaxation rate divided by T [27(1/T1T)] with static
susceptibility suggests admixed ferromagnetic correlations. 27(1/T1T)
simultaneously tracks the valence fluctuations from the 4f -Yb ions in the high
temperature range and field dependent antiferromagnetic correlations among
partially Kondo screened Fe 3d moments at low temperature, the latter evolve
out of an Yb 4f admixed conduction band.Comment: To appear in Phys. Rev. Let
Electronic signature of the vacancy ordering in NbO (Nb3O3)
We investigated the electronic structure of the vacancy-ordered 4d-transition
metal monoxide NbO (Nb3O3) using angle-integrated soft- and hard-x-ray
photoelectron spectroscopy as well as ultra-violet angle-resolved photoelectron
spectroscopy. We found that density-functional-based band structure
calculations can describe the spectral features accurately provided that
self-interaction effects are taken into account. In the angle-resolved spectra
we were able to identify the so-called vacancy band that characterizes the
ordering of the vacancies. This together with the band structure results
indicates the important role of the very large inter-Nb-4d hybridization for
the formation of the ordered vacancies and the high thermal stability of the
ordered structure of niobium monoxide
Bulk and surface electronic properties of SmB6: a hard x-ray photoelectron spectroscopy study
We have carried out bulk-sensitive hard x-ray photoelectron spectroscopy
(HAXPES) measurements on in-situ cleaved and ex-situ polished SmB6 single
crystals. Using the multiplet-structure in the Sm 3d core level spectra, we
determined reliably that the valence of Sm in bulk SmB6 is close to 2.55 at ~5
K. Temperature dependent measurements revealed that the Sm valence gradually
increases to 2.64 at 300 K. From a detailed line shape analysis we can clearly
observe that not only the J=0 but also the J=1 state of the Sm 4f 6
configuration becomes occupied at elevated temperatures. Making use of the
polarization dependence, we were able to identify and extract the Sm 4f
spectral weight of the bulk material. Finally, we revealed that the oxidized or
chemically damaged surface region of the ex-situ polished SmB6 single crystal
is surprisingly thin, about 1 nm only.Comment: 11 pages, 8 figure
Threshold electric field in unconventional density waves
As it is well known most of charge density wave (CDW) and spin density wave
(SDW) exhibit the nonlinear transport with well defined threshold electric
field E_T. Here we study theoretically the threshold electric field of
unconventional density waves. We find that the threshold field increases
monotonically with temperature without divergent behaviour at T_c, unlike the
one in conventional CDW. The present result in the 3D weak pinning limit
appears to describe rather well the threshold electric field observed recently
in the low-temperature phase (LTP) of alpha-(BEDT-TTF)_2KHg(SCN)_4.Comment: 4 pages, 2 figure
Evidence for a Nodeless Gap from the Superfluid Density of Optimally Doped Pr_{1.855}Ce_{0.145}CuO_{4-y} Films
We present measurements of the ab-plane magnetic penetration depth,
\lambda(T), in five optimally doped Pr_{1.855}Ce_{0.145}CuO_{4-y} films for 1.6
K \leq T \leq T_c \sim 24 K. Low resistivities, high superfluid densities
n_s(T)\propto \lambda^{-2}(T), high T_c's, and small transition widths are
reproducible and indicative of excellent film quality. For all five films,
\lambda^{-2}(T)/\lambda^{-2}(0) at low T is well fitted by an exponential
temperature dependence with a gap, \Delta_{min}, of 0.85 k_B T_c. This behavior
is consistent with a nodeless gap and is incompatible with d-wave
superconductivity.Comment: 5 pages, 4 figures, reorganized for clarit
Phenomenological BCS theory of the high- cuprates
A BCS model characterized by a phenomenological pair potential with on-site
(), nearest (), and next nearest () neighbour coupling
constants, and an empirical quasiparticle dispersion taken from angle-resolved
photoemission spectra is considered. The model can consistently explain the
experimental data concerning the pair state of the hole doped cuprates. Three
ingredients are required to make the interpretation possible: the existence of
flat bands, a very small effective on-site repulsion, and a slightly dominating
effective nnn attraction of the order of 60-80meV with a ratio .Comment: 13 pages, uuencoded Postscrip
The effect of an in-plane magnetic field on the interlayer transport of quasiparticles in layered superconductors
We consider the quasiparticle c-axis conductivity in highly anisotropic
layered compounds in the presence of the magnetic field parallel to the layers.
We show that at low temperatures the quasiparticle interlayer conductivity
depends strongly on the orientation of the in-plane magnetic field if the
excitation gap has nodes on the Fermi surface. Thus measurements of the
angle-dependent c-axis (out-of-plane) magnetoresistance, as a function of the
orientation of the magnetic field in the layers, provide information on the
momentum dependence of the superconducting gap (or pseudogap) on the Fermi
surface. Clean and highly anisotropic layered superconductors seem to be the
best candidates for probing the existence and location of the nodes on the
Fermi surface.Comment: 4 pages RevTeX, including 2 PostScript figures, to appear in Phys.
Rev. Let
Integer and half-integer flux-quantum transitions in a niobium/iron-pnictide loop
The recent discovery of iron-based superconductors challenges the existing
paradigm of high-temperature superconductivity. Owing to their unusual
multi-orbital band structure, magnetism, and electron correlation, theories
propose a unique sign reversed s-wave pairing state, with the order parameter
changing sign between the electron and hole Fermi pockets. However, because of
the complex Fermi surface topology and material related issues, the predicted
sign reversal remains unconfirmed. Here we report a novel phase-sensitive
technique for probing unconventional pairing symmetry in the polycrystalline
iron-pnictides. Through the observation of both integer and half-integer
flux-quantum transitions in composite niobium/iron-pnictide loops, we provide
the first phase-sensitive evidence of the sign change of the order parameter in
NdFeAsO0.88F0.12, lending strong support for microscopic models predicting
unconventional s-wave pairing symmetry. These findings have important
implications on the mechanism of pnictide superconductivity, and lay the
groundwork for future studies of new physics arising from the exotic order in
the FeAs-based superconductors.Comment: 23 pages, including 4 figures and supplementary informatio
Intrinsic frustration effects in anisotropic superconductors
Lattice distortions in which the axes are locally rotated provide an
intrinsic source of frustration in anisotropic superconductors. A general
framework to study this effect is presented. The influence of lattice defects
and phonons in and layered superconductors is studied.Comment: enlarged versio
Spin and orbital effects of Cooper pairs coupled to a single magnetic impurity
The Kondo effect strongly depends on spin and orbital degrees of freedom of
unconventional superconductivity. We focus on the Kondo effect in the -wave and -wave superconductors to compare the
magnetic properties of the spin-triplet and spin-singlet Cooper pairs. The
difference appears when both of the paired electrons couple to a local spin
directly. For the -wave, the ground state is always a spin doublet
for a local spin, and it is always a spin singlet for
. The latter is due to uniaxial spin anisotropy of the triplet
Cooper pair. For the -wave, the interchange of ground
states occurs, which resembles a competition between the Kondo effect and the
superconducting energy gap in s-wave superconductors. Thus the internal degrees
of freedom of Cooper pairs give a variety to the Kondo effect.Comment: 7 pages, 6 figures, RevTex, to be published in Phys. Rev.
- …
