We investigated the electronic structure of the vacancy-ordered 4d-transition
metal monoxide NbO (Nb3O3) using angle-integrated soft- and hard-x-ray
photoelectron spectroscopy as well as ultra-violet angle-resolved photoelectron
spectroscopy. We found that density-functional-based band structure
calculations can describe the spectral features accurately provided that
self-interaction effects are taken into account. In the angle-resolved spectra
we were able to identify the so-called vacancy band that characterizes the
ordering of the vacancies. This together with the band structure results
indicates the important role of the very large inter-Nb-4d hybridization for
the formation of the ordered vacancies and the high thermal stability of the
ordered structure of niobium monoxide