44,328 research outputs found
Integration of knowledge-based system, artificial neural networks and multimedia for gear design
Design is a complicated area consisting of a combination of rules, technical information and personal judgement. The quality of design depends highly on the designer's knowledge and experience. This system attempts to simulate the design process and to capture design expertise by combining artificial neural networks (ANNs) and knowledge based system (KBS) together with multi-media (MM). It has been applied to the design of gears. Within the system the knowledge based system handles clearly defined design knowledge, the artificial neural networks capture knowledge which is difficult to quantify and multi-media provides a user-friendly interface prompting the user to input information and to retrieve results during design process. The finished system illustrates how features of different Artificial Intelligence techniques, KBS, ANNs and MM, are combined in a hybrid manner to conduct complicated design tasks
Large Scale Soft X-ray Loops And Their Magnetic Chirality In Both Hemispheres
The magnetic chirality in solar atmosphere has been studied based on the soft
X-ray and magnetic field observations. It is found that some of large-scale
twisted soft X-ray loop systems occur for several months in the solar
atmosphere, before the disappearance of the corresponding background
large-scale magnetic field. It provides the observational evidence of the
helicity of the large-scale magnetic field in the solar atmosphere and the
reverse one relative to the helicity rule in both hemispheres with solar
cycles. The transfer of the magnetic helicity from the subatmosphere is
consistent with the formation of large-scale twisted soft X-ray loops in the
both solar hemispheres
Low-Altitude Reconnection Inflow-Outflow Observations during a 2010 November 3 Solar Eruption
For a solar flare occurring on 2010 November 3, we present observations using
several SDO/AIA extreme-ultraviolet (EUV) passbands of an erupting flux rope
followed by inflows sweeping into a current sheet region. The inflows are soon
followed by outflows appearing to originate from near the termination point of
the inflowing motion - an observation in line with standard magnetic
reconnection models. We measure average inflow plane-of-sky speeds to range
from ~150-690 km/s with the initial, high-temperature inflows being the
fastest. Using the inflow speeds and a range of Alfven speeds, we estimate the
Alfvenic Mach number which appears to decrease with time. We also provide
inflow and outflow times with respect to RHESSI count rates and find that the
fast, high-temperature inflows occur simultaneously with a peak in the RHESSI
thermal lightcurve. Five candidate inflow-outflow pairs are identified with no
more than a minute delay between detections. The inflow speeds of these pairs
are measured to be 10^2 km/s with outflow speeds ranging from 10^2-10^3 km/s -
indicating acceleration during the reconnection process. The fastest of these
outflows are in the form of apparently traveling density enhancements along the
legs of the loops rather than the loop apexes themselves. These flows could
either be accelerated plasma, shocks, or waves prompted by reconnection. The
measurements presented here show an order of magnitude difference between the
retraction speeds of the loops and the speed of the density enhancements within
the loops - presumably exiting the reconnection site.Comment: 31 pages, 13 figures, 1 table, Accepted to ApJ (expected publication
~July 2012
Renormalization of the Sigma-Omega model within the framework of U(1) gauge symmetry
It is shown that the Sigma-Omega model which is widely used in the study of
nuclear relativistic many-body problem can exactly be treated as an Abelian
massive gauge field theory. The quantization of this theory can perfectly be
performed by means of the general methods described in the quantum gauge field
theory. Especially, the local U(1) gauge symmetry of the theory leads to a
series of Ward-Takahashi identities satisfied by Green's functions and proper
vertices. These identities form an uniquely correct basis for the
renormalization of the theory. The renormalization is carried out in the
mass-dependent momentum space subtraction scheme and by the renormalization
group approach. With the aid of the renormalization boundary conditions, the
solutions to the renormalization group equations are given in definite
expressions without any ambiguity and renormalized S-matrix elememts are
exactly formulated in forms as given in a series of tree diagrams provided that
the physical parameters are replaced by the running ones. As an illustration of
the renormalization procedure, the one-loop renormalization is concretely
carried out and the results are given in rigorous forms which are suitable in
the whole energy region. The effect of the one-loop renormalization is examined
by the two-nucleon elastic scattering.Comment: 32 pages, 17 figure
Fermi gas in harmonic oscillator potentials
Assuming the validity of grand canonical statistics, we study the properties
of a spin-polarized Fermi gas in harmonic traps. Universal forms of Fermi
temperature , internal energy and the specific heat per particle of
the trapped Fermi gas are calculated as a {\it function} of particle number,
and the results compared with those of infinite number particles.Comment: 8 pages, 1 figure, LATE
Highlights of the SLD Physics Program at the SLAC Linear Collider
Starting in 1989, and continuing through the 1990s, high-energy physics
witnessed a flowering of precision measurements in general and tests of the
standard model in particular, led by e+e- collider experiments operating at the
Z0 resonance. Key contributions to this work came from the SLD collaboration at
the SLAC Linear Collider. By exploiting the unique capabilities of this
pioneering accelerator and the SLD detector, including a polarized electron
beam, exceptionally small beam dimensions, and a CCD pixel vertex detector, SLD
produced a broad array of electroweak, heavy-flavor, and QCD measurements. Many
of these results are one of a kind or represent the world's standard in
precision. This article reviews the highlights of the SLD physics program, with
an eye toward associated advances in experimental technique, and the
contribution of these measurements to our dramatically improved present
understanding of the standard model and its possible extensions.Comment: To appear in 2001 Annual Review of Nuclear and Particle Science; 78
pages, 31 figures; A version with higher resolution figures can be seen at
http://www.slac.stanford.edu/pubs/slacpubs/8000/slac-pub-8985.html; Second
version incorporates minor changes to the tex
Robust sound source mapping using three-layered selective audio rays for mobile robots
© 2016 IEEE. This paper investigates sound source mapping in a real environment using a mobile robot. Our approach is based on audio ray tracing which integrates occupancy grids and sound source localization using a laser range finder and a microphone array. Previous audio ray tracing approaches rely on all observed rays and grids. As such observation errors caused by sound reflection, sound occlusion, wall occlusion, sounds at misdetected grids, etc. can significantly degrade the ability to locate sound sources in a map. A three-layered selective audio ray tracing mechanism is proposed in this work. The first layer conducts frame-based unreliable ray rejection (sensory rejection) considering sound reflection and wall occlusion. The second layer introduces triangulation and audio tracing to detect falsely detected sound sources, rejecting audio rays associated to these misdetected sounds sources (short-term rejection). A third layer is tasked with rejecting rays using the whole history (long-term rejection) to disambiguate sound occlusion. Experimental results under various situations are presented, which proves the effectiveness of our method
Simple Lie Color Algebras of Weyl Type
For an -color-commutative associative algebra with an
identity element over a field of characteristic not 2, and for a
color-commutative subalgebra of color-derivations of , denote by
the associative subalgebra of generated by (regarding as
operators on via left multiplication) and . It is easily proved that, as
an associative algebra, is -graded simple if and only if is
\G-graded -simple. Suppose is \G-graded -simple. Then,
(a) is a free left -module;
(b) as a Lie color algebra, the subquotient
is simple (except one minor case), where
is the color center of .
The structure of this subquotient is explicitly described.Comment: 10 pages, latex; to appear in Israel J. Mat
Cosmic ray feedback in the FIRE simulations: constraining cosmic ray propagation with GeV gamma ray emission
We present the implementation and the first results of cosmic ray (CR)
feedback in the Feedback In Realistic Environments (FIRE) simulations. We
investigate CR feedback in non-cosmological simulations of dwarf, sub-
starburst, and galaxies with different propagation models, including
advection, isotropic and anisotropic diffusion, and streaming along field lines
with different transport coefficients. We simulate CR diffusion and streaming
simultaneously in galaxies with high resolution, using a two moment method. We
forward-model and compare to observations of -ray emission from nearby
and starburst galaxies. We reproduce the -ray observations of dwarf and
galaxies with constant isotropic diffusion coefficient . Advection-only and streaming-only
models produce order-of-magnitude too large -ray luminosities in dwarf
and galaxies. We show that in models that match the -ray
observations, most CRs escape low-gas-density galaxies (e.g.\ dwarfs) before
significant collisional losses, while starburst galaxies are CR proton
calorimeters. While adiabatic losses can be significant, they occur only after
CRs escape galaxies, so they are only of secondary importance for -ray
emissivities. Models where CRs are ``trapped'' in the star-forming disk have
lower star formation efficiency, but these models are ruled out by -ray
observations. For models with constant that match the -ray
observations, CRs form extended halos with scale heights of several kpc to
several tens of kpc.Comment: 31 pages, 26 figures, accepted for publication in MNRA
- …
