1,230 research outputs found
Xenosurveillance reflects traditional sampling techniques for the identification of human pathogens: A comparative study in West Africa
BACKGROUND: Novel surveillance strategies are needed to detect the rapid and continuous emergence of infectious disease agents. Ideally, new sampling strategies should be simple to implement, technologically uncomplicated, and applicable to areas where emergence events are known to occur. To this end, xenosurveillance is a technique that makes use of blood collected by hematophagous arthropods to monitor and identify vertebrate pathogens. Mosquitoes are largely ubiquitous animals that often exist in sizable populations. As well, many domestic or peridomestic species of mosquitoes will preferentially take blood-meals from humans, making them a unique and largely untapped reservoir to collect human blood.
METHODOLOGY/PRINCIPAL FINDINGS: We sought to take advantage of this phenomenon by systematically collecting blood-fed mosquitoes during a field trail in Northern Liberia to determine whether pathogen sequences from blood engorged mosquitoes accurately mirror those obtained directly from humans. Specifically, blood was collected from humans via finger-stick and by aspirating bloodfed mosquitoes from the inside of houses. Shotgun metagenomic sequencing of RNA and DNA derived from these specimens was performed to detect pathogen sequences. Samples obtained from xenosurveillance and from finger-stick blood collection produced a similar number and quality of reads aligning to two human viruses, GB virus C and hepatitis B virus.
CONCLUSIONS/SIGNIFICANCE: This study represents the first systematic comparison between xenosurveillance and more traditional sampling methodologies, while also demonstrating the viability of xenosurveillance as a tool to sample human blood for circulating pathogens
Chondrule size and related physical properties: a compilation and evaluation of current data across all meteorite groups
The examination of the physical properties of chondrules has generally
received less emphasis than other properties of meteorites such as their
mineralogy, petrology, and chemical and isotopic compositions. Among the
various physical properties of chondrules, chondrule size is especially
important for the classification of chondrites into chemical groups, since each
chemical group possesses a distinct size-frequency distribution of chondrules.
Knowledge of the physical properties of chondrules is also vital for the
development of astrophysical models for chondrule formation, and for
understanding how to utilize asteroidal resources in space exploration. To
examine our current knowledge of chondrule sizes, we have compiled and provide
commentary on available chondrule dimension literature data. We include all
chondrite chemical groups as well as the acapulcoite primitive achondrites,
some of which contain relict chondrules. We also compile and review current
literature data for other astrophysically-relevant physical properties
(chondrule mass and density). Finally, we briefly examine some additional
physical aspects of chondrules such as the frequencies of compound and
'cratered' chondrules. A purpose of this compilation is to provide a useful
resource for meteoriticists and astrophysicists alike.Comment: invited review accepted for publication in Chemie der Erd
Primitive Fine-Grained Matrix in the Unequilbrated Enstatite Chondrites
Enstatite chondrites (EC) have important implications for constraining conditions in the early solar system and for understanding the evolution of the Earth and other inner planets. They are among the most reduced solar system materials as reflected in their mineral compositions and assemblage. They are the only chondrites with oxygen as well as Cr, Ti, Ni and Zn stable isotope compositions similar to the earth and moon and most are completely dry, lacking any evidence of hydrous alteration; the only exception are EC clasts in the Kaidun breccia which have hydrous minerals. Thus, ECs likely formed within the snow line and are good candidates to be building blocks of the inner planets. Our goals are to provide a more detailed characterization the fine-grained matrix in E3 chondrites, understand its origin and relationship to chondrules, decipher the relationship between EH and EL chondrites and compare E3 matrix to matrices in C and O chondrites as well as other fine-grained solar system materials. Is E3 matrix the dust remaining from chondrule formation or a product of parent body processing or both
A Microanalytical (TEM) Study of Fine-grained Chondrule Rims in NWA 5717
Northwest Africa (NWA) 5717 is a highly primitive ordinary chondrite of petrologic type 3.05 with ubiquitous fine-grained chondrule rims [1, 2]. Rims appear around approximately 60% of chondrules and are comprised of micron-sized mineral and lithic fragments and microchondrules that are embdedded in an FeO-rich submicron groundmass that compositionally resembles fayalitic olivine. Some rim clasts appear overprinted with FeO-rich material, suggesting secondary alteration that postdates rim formation. Here we present a microanalytical (TEM) study of the submicron component (i.e. the groundmass) of the rims in order to determine the crystal structures and compositions of their constituent phases and decipher the accretion and alteration history recorded in rims
Strong electric fields induced on a sharp stellar boundary
Due to a first order phase transition, a compact star may have a
discontinuous distribution of baryon as well as electric charge densities, as
e.g. at the surface of a strange quark star. The induced separation of positive
and negative charges may lead to generation of supercritical electric fields in
the vicinity of such a discontinuity. We study this effect within a
relativistic Thomas-Fermi approximation and demonstrate that the strength of
the electric field depends strongly on the degree of sharpness of the surface.
The influence of strong electric fields on the stability of compact stars is
discussed. It is demonstrated that stable configurations appear only when the
counter-pressure of degenerate fermions is taken into consideration.Comment: 13 pages, 2 figure
Lack of Evidence of In-Situ Decay of Aluminum-26 in a FeO-Poor Ferromagnesian Crystalline Silicate Particle, Pyxie, from Comet Wild 2
One of the important discoveries from the Stardust mission is the observation of crystalline silicate particles that resemble Ca, Al-rich inclusions (CAIs) and chondrules in carbonaceous chondrites], which suggests radial transport of high temperature solids from the inner to the outer solar nebula regions and capture by accreting cometary objects. The Al-Mg isotope analyses of CAI-like and type II chondrule-like particles revealed no excess of Mg-26 derived from in-situ decay of Al-26 (Tau)(sub 1/2) = 0.705Myr; ), suggesting late formation of these particles. However, the number of Wild 2 particles analyzed for Al-Mg isotopes is still limited (n = 3). In order to better understand the timing of the formation of Wild 2 particles and possible radial transport in the protoplanetary disk, we performed SIMS (Secondary Ion Mass Spectrometer) Al-Mg isotope analyses of plagioclase in a FeO-poor ferromagnesian Wild 2 particle, which is the most abundant type among crystalline Wild 2 particles
Northwest Africa (NWA) 8785, an EL3 Chondrite with FeO-Rich Matrix
The enstatite (E) chondrites are enigmatic but important for understanding the evolution of the terrestrial planets. They have highly reduced mineral assemblages in which enstatite (near pure in compostion) is the dominant silicate, metal is abundant and contains >2.5 wt. % Si in some EH3s, elements which are generally lithophile in most chondrites occur as sulfide and some E3s contain nitrides and carbides. Notably, stable isotope compositions are similar to the Earth-Moon. Aside from E chondrite clasts in the Kaidun breccia, the enstaite chondrites are dry, lacking evidence of ever having hydrous minerals, distinguishing them from most other chondrite groups and suggesting they formed relatively close to the sun, inside of the snow line. Compared to other chondrite groups, the E3s are also matrix-poor, with EH3s having ~4-12 vol. % and EL3s 5 vol % matrix. Here we present a study of NWA 8785, a remarkable new EL3 chondrite with an FeO-rich, fine-grained matrix. Our goals are to understand E chondrite matrix and the evolution and alteration history of the EL3 parent body
Development and validation of the ACE tool: Assessing medical trainees' competency in evidence based medicine
BACKGROUND: While a variety of instruments have been developed to assess knowledge and skills in evidence based medicine (EBM), few assess all aspects of EBM - including knowledge, skills attitudes and behaviour - or have been psychometrically evaluated. The aim of this study was to develop and validate an instrument that evaluates medical trainees’ competency in EBM across knowledge, skills and attitude. METHODS: The ‘Assessing Competency in EBM’ (ACE) tool was developed by the authors, with content and face validity assessed by expert opinion. A cross-sectional sample of 342 medical trainees representing ‘novice’, ‘intermediate’ and ‘advanced’ EBM trainees were recruited to complete the ACE tool. Construct validity, item difficulty, internal reliability and item discrimination were analysed. RESULTS: We recruited 98 EBM-novice, 108 EBM-intermediate and 136 EBM-advanced participants. A statistically significant difference in the total ACE score was observed and corresponded to the level of training: on a 0-15-point test, the mean ACE scores were 8.6 for EBM-novice; 9.5 for EBM-intermediate; and 10.4 for EBM-advanced (p < 0.0001). Individual item discrimination was excellent (Item Discrimination Index ranging from 0.37 to 0.84), with internal reliability consistent across all but three items (Item Total Correlations were all positive ranging from 0.14 to 0.20). CONCLUSION: The 15-item ACE tool is a reliable and valid instrument to assess medical trainees’ competency in EBM. The ACE tool provides a novel assessment that measures user performance across the four main steps of EBM. To provide a complete suite of instruments to assess EBM competency across various patient scenarios, future refinement of the ACE instrument should include further scenarios across harm, diagnosis and prognosis
The influence of anesthetics, neurotransmitters and antibiotics on the relaxation processes in lipid membranes
In the proximity of melting transitions of artificial and biological
membranes fluctuations in enthalpy, area, volume and concentration are
enhanced. This results in domain formation, changes of the elastic constants,
changes in permeability and slowing down of relaxation processes. In this study
we used pressure perturbation calorimetry to investigate the relaxation time
scale after a jump into the melting transition regime of artificial lipid
membranes. This time corresponds to the characteristic rate of domain growth.
The studies were performed on single-component large unilamellar and
multilamellar vesicle systems with and without the addition of small molecules
such as general anesthetics, neurotransmitters and antibiotics. These drugs
interact with membranes and affect melting points and profiles. In all systems
we found that heat capacity and relaxation times are related to each other in a
simple manner. The maximum relaxation time depends on the cooperativity of the
heat capacity profile and decreases with a broadening of the transition. For
this reason the influence of a drug on the time scale of domain formation
processes can be understood on the basis of their influence on the heat
capacity profile. This allows estimations of the time scale of domain formation
processes in biological membranes.Comment: 12 pages, 6 figure
Dynamics in online social networks
An increasing number of today's social interactions occurs using online
social media as communication channels. Some online social networks have become
extremely popular in the last decade. They differ among themselves in the
character of the service they provide to online users. For instance, Facebook
can be seen mainly as a platform for keeping in touch with close friends and
relatives, Twitter is used to propagate and receive news, LinkedIn facilitates
the maintenance of professional contacts, Flickr gathers amateurs and
professionals of photography, etc. Albeit different, all these online platforms
share an ingredient that pervades all their applications. There exists an
underlying social network that allows their users to keep in touch with each
other and helps to engage them in common activities or interactions leading to
a better fulfillment of the service's purposes. This is the reason why these
platforms share a good number of functionalities, e.g., personal communication
channels, broadcasted status updates, easy one-step information sharing, news
feeds exposing broadcasted content, etc. As a result, online social networks
are an interesting field to study an online social behavior that seems to be
generic among the different online services. Since at the bottom of these
services lays a network of declared relations and the basic interactions in
these platforms tend to be pairwise, a natural methodology for studying these
systems is provided by network science. In this chapter we describe some of the
results of research studies on the structure, dynamics and social activity in
online social networks. We present them in the interdisciplinary context of
network science, sociological studies and computer science.Comment: 17 pages, 4 figures, book chapte
- …
