18,865 research outputs found

    Limitations on the extent of off-center displacements in TbMnO3 from EXAFS measurements

    Full text link
    We present EXAFS data at the Mn K and Tb L3 edges that provide upper limits on the possible displacements of any atoms in TbMnO3. The displacements must be less than 0.005-0.01A for all atoms which eliminates the possibility of moderate distortions (0.02A) with a small c-axis component, but for which the displacements in the ab plane average to zero. Assuming the polarization arises from a displacement of the O2 atoms along the c-axis, the measured polarization then leads to an O2 displacement that is at least 6X10^{-4}A, well below our experimental limit. Thus a combination of the EXAFS and the measured electrical polarization indicate that the atomic displacements likely lie in the range 6X10^{-4} - 5X10^{-3}A.Comment: submitted to PRB; 11 pages (preprint form) 7 figure

    Resonant x-ray scattering study on multiferroic BiMnO3

    Full text link
    Resonant x-ray scattering is performed near the Mn K-absorption edge for an epitaxial thin film of BiMnO3. The azimuthal angle dependence of the resonant (003) peak (in monoclinic indices) is measured with different photon polarizations; for the σπ\sigma\to\pi' channel a 3-fold symmetric oscillation is observed in the intensity variation, while the σσ\sigma\to\sigma' scattering intensity remains constant. These features are accounted for in terms of the peculiar ordering of the manganese 3d orbitals in BiMnO3. It is demonstrated that the resonant peak persists up to 770 K with an anomaly around 440 K; these high and low temperatures coincide with the structural transition temperatures, seen in bulk, with and without a symmetry change, respectively. A possible relationship of the orbital order with the ferroelectricity of the system is discussed.Comment: 14 pages, 4 figure

    Purification and detection of entangled coherent states

    Full text link
    In [J. C. Howell and J. A. Yeazell, Phys. Rev. A 62, 012102 (2000)], a proposal is made to generate entangled macroscopically distinguishable states of two spatially separated traveling optical modes. We model the decoherence due to light scattering during the propagation along an optical transmission line and propose a setup allowing an entanglement purification from a number of preparations which are partially decohered due to transmission. A purification is achieved even without any manual intervention. We consider a nondemolition configuration to measure the purity of the state as contrast of interference fringes in a double-slit setup. Regarding the entangled coherent states as a state of a bipartite quantum system, a close relationship between purity and entanglement of formation can be obtained. In this way, the contrast of interference fringes provides a direct means to measure entanglement.Comment: 9 pages, 6 figures, using Revtex

    Lattice dynamics and correlated atomic motion from the atomic pair distribution function

    Full text link
    The mean-square relative displacements (MSRD) of atomic pair motions in crystals are studied as a function of pair distance and temperature using the atomic pair distribution function (PDF). The effects of the lattice vibrations on the PDF peak widths are modelled using both a multi-parameter Born von-Karman (BvK) force model and a single-parameter Debye model. These results are compared to experimentally determined PDFs. We find that the near-neighbor atomic motions are strongly correlated, and that the extent of this correlation depends both on the interatomic interactions and crystal structure. These results suggest that proper account of the lattice vibrational effects on the PDF peak width is important in extracting information on static disorder in a disordered system such as an alloy. Good agreement is obtained between the BvK model calculations of PDF peak widths and the experimentally determined peak widths. The Debye model successfully explains the average, though not detailed, natures of the MSRD of atomic pair motion with just one parameter. Also the temperature dependence of the Debye model largely agrees with the BvK model predictions. Therefore, the Debye model provides a simple description of the effects of lattice vibrations on the PDF peak widths.Comment: 9 pages, 11 figure

    Neutron-rich rare isotope production from projectile fission of heavy beams in the energy range of 20 MeV/nucleon

    Full text link
    We investigate the possibilities of producing neutron-rich nuclides in projectile fission of heavy beams in the energy range of 20 MeV/nucleon expected from low-energy facilities. We report our efforts to theoretically describe the reaction mechanism of projectile fission following a multinucleon transfer collision at this energy range. Our calculations are mainly based on a two-step approach: the dynamical stage of the collision is described with either the phenomenological Deep-Inelastic Transfer model (DIT), or with the microscopic Constrained Molecular Dynamics model (CoMD). The deexcitation/fission of the hot heavy projectile fragments is performed with the Statistical Mul- tifragmentation Model (SMM). We compared our model calculations with our previous experimental projectile-fission data of 238U (20 MeV/nucleon)+208Pb and 197Au (20 MeV/nucleon)+197Au and found an overall reasonable agreement. Our study suggests that projectile fission following periph- eral heavy-ion collisions at this energy range offers an effective route to access very neutron-rich rare isotopes toward and beyond the astrophysical r-process path

    Ultrashort PW laser pulse interaction with target and ion acceleration

    Get PDF
    We present the experimental results on ion acceleration by petawatt femtosecond laser solid interaction and explore strategies to enhance ion energy. The irradiation of micrometer thick (0.2 - 6.0 micron) Al foils with a virtually unexplored intensity regime (8x10^19 W/cm^2 - 1x10^21 W/cm^2) resulting in ion acceleration along the rear and the front surface target normal direction is investigated. The maximum energy of protons and carbon ions, obtained at optimised laser intensity condition (by varying laser energy or focal spot size), exhibit a rapid intensity scaling as I^0.8 along the rear surface target normal direction and I^0.6 along the front surface target normal direction. It was found that proton energy scales much faster with laser energy rather than the laser focal spot size. Additionally, the ratio of maximum ion energy along the both directions is found to be constant for the broad range of target thickness and laser intensities. A proton flux is strongly dominated in the forward direction at relatively low laser intensities. Increasing the laser intensity results in the gradual increase in the backward proton flux and leads to almost equalisation of ion flux in both directions in the entire energy range. These experimental findings may open new perspectives for applications.Comment: 6 pages, 5 figures, 3rd EAAC worksho

    Scaling theory of transport in complex networks

    Full text link
    Transport is an important function in many network systems and understanding its behavior on biological, social, and technological networks is crucial for a wide range of applications. However, it is a property that is not well-understood in these systems and this is probably due to the lack of a general theoretical framework. Here, based on the finding that renormalization can be applied to bio-networks, we develop a scaling theory of transport in self-similar networks. We demonstrate the networks invariance under length scale renormalization and we show that the problem of transport can be characterized in terms of a set of critical exponents. The scaling theory allows us to determine the influence of the modular structure on transport. We also generalize our theory by presenting and verifying scaling arguments for the dependence of transport on microscopic features, such as the degree of the nodes and the distance between them. Using transport concepts such as diffusion and resistance we exploit this invariance and we are able to explain, based on the topology of the network, recent experimental results on the broad flow distribution in metabolic networks.Comment: 8 pages, 6 figure

    Quickest Paths in Simulations of Pedestrians

    Full text link
    This contribution proposes a method to make agents in a microscopic simulation of pedestrian traffic walk approximately along a path of estimated minimal remaining travel time to their destination. Usually models of pedestrian dynamics are (implicitly) built on the assumption that pedestrians walk along the shortest path. Model elements formulated to make pedestrians locally avoid collisions and intrusion into personal space do not produce motion on quickest paths. Therefore a special model element is needed, if one wants to model and simulate pedestrians for whom travel time matters most (e.g. travelers in a station hall who are late for a train). Here such a model element is proposed, discussed and used within the Social Force Model.Comment: revised version submitte
    corecore