182 research outputs found

    Laser annealing of silicon on sapphire

    Get PDF
    Silicon-implanted silicon-on-sapphire wafers have been annealed by 50-ns pulses from a Q-switched Nd : YAG laser. The samples have been analyzed by channeling and by omega-scan x-ray double diffraction. After irradiation with pulses of a fluence of about 5 J cm^–2 the crystalline quality of the silicon layer is found to be better than in the as-grown state

    Towards Weyl fermions on the lattice without artefacts

    Full text link
    In spite of the breakthrough in non-perturbative chiral gauge theories during the last decade, the present formulation has stubborn artefacts. Independently of the fermion representation one is confronted with unwanted CP violation and infinitely many undetermined weight factors. Renormalization group identifies the culprit. We demonstrate the procedure on Weyl fermions in a real representation

    Shuntchirurgie in Europa und den USA: Ein kritischer Vergleich

    Get PDF
    Zusammenfassung: Nach einem anfĂ€nglich gemeinsamen Weg in der Fistelchirurgie begann in den USA ab etwa 1975 der bevorzugte Einsatz von Prothesenshunts. In bis zu 80% wurden bei Erstoperationen GefĂ€ĂŸprothesen implantiert, mit entsprechend hoher Komplikationsrate und hohen Folgekosten. Europa pflegte, mit lokalen Unterschieden, das Konzept der vorzugsweisen Verwendung von arteriovenösen Fisteln weiter (AVF). Der Prothesenanteil war nie höher als 40%. UnterstĂŒtzt von Richtlinien, versuchen die USA seit 1997 einen deutlichen Umschwung herbeizufĂŒhren. Der Anteil primĂ€rer AVF ist seither angestiegen, bei allerdings wohl erhöhter initialer Versagerquote im internationalen Vergleich. Über Richtlinien hinaus sollte fĂŒr beide Kontinente als vordringliche Aufgaben die interdisziplinĂ€re Zusammenarbeit aller beteiligten Fachgebiete gelten: DurchfĂŒhrung zertifizierter, interdisziplinĂ€rer Kurse mit konsensfĂ€higen Inhalten, Einrichtung von Referenzzentren mit einheitlicher, umfassender Dokumentation, Aufbau von Datenbanken zur QualitĂ€tskontrolle mit abrufbaren Komplikations- und Funktionsraten, Standardisierung der Überwachung von GefĂ€ĂŸzugĂ€ngen im Dialysezentru

    Effect of electron-nuclear spin interactions on electron-spin qubits localized in self-assembled quantum dots

    Get PDF
    The effect of electron-nuclear spin interactions on qubit operations is investigated for a qubit represented by the spin of an electron localized in a self-assembled quantum dot. The localized electron wave function is evaluated within the atomistic tight-binding model. The magnetic field generated by the nuclear spins is estimated in the presence of an inhomogeneous environment characterized by a random nuclear spin configuration, by the dot-size distribution, by alloy disorder, and by interface disorder. Due to these inhomogeneities, the magnitude of the nuclear magnetic field varies from one qubit to another by the order of 100 G, 100 G, 10 G, and 0.1 G, respectively. The fluctuation of the magnetic field causes errors in exchange operations due to the inequality of the Zeeman splitting between two qubits. We show that the errors can be made lower than the quantum error threshold if an exchange energy larger than 0.1 meV is used for the operation.Comment: 15 pages, 2 figure

    OntoGene in BioCreative II

    Full text link
    BACKGROUND: Research scientists and companies working in the domains of biomedicine and genomics are increasingly faced with the problem of efficiently locating, within the vast body of published scientific findings, the critical pieces of information that are needed to direct current and future research investment. RESULTS: In this report we describe approaches taken within the scope of the second BioCreative competition in order to solve two aspects of this problem: detection of novel protein interactions reported in scientific articles, and detection of the experimental method that was used to confirm the interaction. Our approach to the former problem is based on a high-recall protein annotation step, followed by two strict disambiguation steps. The remaining proteins are then combined according to a number of lexico-syntactic filters, which deliver high-precision results while maintaining reasonable recall. The detection of the experimental methods is tackled by a pattern matching approach, which has delivered the best results in the official BioCreative evaluation. CONCLUSION: Although the results of BioCreative clearly show that no tool is sufficiently reliable for fully automated annotations, a few of the proposed approaches (including our own) already perform at a competitive level. This makes them interesting either as standalone tools for preliminary document inspection, or as modules within an environment aimed at supporting the process of curation of biomedical literature

    Mechanochemical synthesis and high temperature thermoelectric properties of calcium-doped lanthanum telluride La_(3−x)Ca_xTe_4

    Get PDF
    The thermoelectric properties from 300–1275 K of calcium-doped La_(3−x)Te_4 are reported. La_(3−x)Te_4 is a high temperature n-type thermoelectric material with a previously reported zT_(max) 1.1 at 1273 K and x = 0.23. Computational modeling suggests the La atoms define the density of states of the conduction band for La_(3−x)Te_4. Doping with Ca^(2+) on the La^(3+) site is explored as a means of modifying the density of states to improve the power factor and to achieve a finer control over the carrier concentration. High purity, oxide-free samples are produced by ball milling of the elements and consolidation by spark plasma sintering. Calcium substitution upon the lanthanum site was confirmed by a combination of Rietveld refinements of powder X-ray diffraction data and wave dispersive spectroscopy. A zT_(max) 1.2 is reached at 1273 K for the composition La_(2.2)Ca_(0.78)Te_4 and the relative increase compared to La_(3−x)Te_4 is attributed to the finer carrier concentration

    A comparison of machine learning classifiers for pediatric epilepsy using resting-state functional MRI latency data

    Get PDF
    Epilepsy affects 1 in 150 children under the age of 10 and is the most common chronic pediatric neurological condition; poor seizure control can irreversibly disrupt normal brain development. The present study compared the ability of different machine learning algorithms trained with resting-state functional MRI (rfMRI) latency data to detect epilepsy. Preoperative rfMRI and anatomical MRI scans were obtained for 63 patients with epilepsy and 259 healthy controls. The normal distribution of latency z-scores from the epilepsy and healthy control cohorts were analyzed for overlap in 36 seed regions. In these seed regions, overlap between the study cohorts ranged from 0.44-0.58. Machine learning features were extracted from latency z-score maps using principal component analysis. Extreme Gradient Boosting (XGBoost), Support Vector Machines (SVM), and Random Forest algorithms were trained with these features. Area under the receiver operating characteristics curve (AUC), accuracy, sensitivity, specificity and F1-scores were used to evaluate model performance. The XGBoost model outperformed all other models with a test AUC of 0.79, accuracy of 74%, specificity of 73%, and a sensitivity of 77%. The Random Forest model performed comparably to XGBoost across multiple metrics, but it had a test sensitivity of 31%. The SVM model did not perform \u3e70% in any of the test metrics. The XGBoost model had the highest sensitivity and accuracy for the detection of epilepsy. Development of machine learning algorithms trained with rfMRI latency data could provide an adjunctive method for the diagnosis and evaluation of epilepsy with the goal of enabling timely and appropriate care for patients

    Kinetics of exciton photoluminescence in type-II semiconductor superlattices

    Full text link
    The exciton decay rate at a rough interface in type-II semiconductor superlattices is investigated. It is shown that the possibility of recombination of indirect excitons at a plane interface essentially affects kinetics of the exciton photoluminescence at a rough interface. This happens because of strong correlation between the exciton recombination at the plane interface and at the roughness. Expressions that relate the parameters of the luminescence kinetics with statistical characteristics of the rough interface are obtained. The mean height and length of roughnesses in GaAs/AlAs superlattices are estimated from the experimental data.Comment: 3 PostScript figure
    • 

    corecore