338 research outputs found

    Anomalous crossover between thermal and shot noise in macroscopic diffusive conductors

    Get PDF
    We predict the existence of an anomalous crossover between thermal and shot noise in macroscopic diffusive conductors. We first show that, besides thermal noise, these systems may also exhibit shot noise due to fluctuations of the total number of carriers in the system. Then we show that at increasing currents the crossover between the two noise behaviors is anomalous, in the sense that the low frequency current spectral density displays a region with a superlinear dependence on the current up to a cubic law. The anomaly is due to the non-trivial coupling in the presence of the long range Coulomb interaction among the three time scales relevant to the phenomenon, namely, diffusion, transit and dielectric relaxation time.Comment: 4 pages, 2 figure

    In situ reduction of charge noise in GaAs/AlGaAs Schottky-gated devices

    Full text link
    We show that an insulated electrostatic gate can be used to strongly suppress ubiquitous background charge noise in Schottky-gated GaAs/AlGaAs devices. Via a 2-D self-consistent simulation of the conduction band profile we show that this observation can be explained by reduced leakage of electrons from the Schottky gates into the semiconductor through the Schottky barrier, consistent with the effect of "bias cooling". Upon noise reduction, the noise power spectrum generally changes from Lorentzian to 1/f1/f type. By comparing wafers with different Al content, we exclude that DX centers play a dominant role in the charge noise.Comment: 4 pages, 3 figure

    Amplification by stochastic interference

    Full text link
    A new method is introduced to obtain a strong signal by the interference of weak signals in noisy channels. The method is based on the interference of 1/f noise from parallel channels. One realization of stochastic interference is the auditory nervous system. Stochastic interference may have broad potential applications in the information transmission by parallel noisy channels

    Shot Noise in Linear Macroscopic Resistors

    Get PDF
    We report on a direct experimental evidence of shot noise in a linear macroscopic resistor. The origin of the shot noise comes from the fluctuation of the total number of charge carriers inside the resistor associated with their diffusive motion under the condition that the dielectric relaxation time becomes longer than the dynamic transit time. Present results show that neither potential barriers nor the absence of inelastic scattering are necessary to observe shot noise in electronic devices.Comment: 10 pages, 5 figure

    Thermal noise limitations to force measurements with torsion pendulums: Applications to the measurement of the Casimir force and its thermal correction

    Full text link
    A general analysis of thermal noise in torsion pendulums is presented. The specific case where the torsion angle is kept fixed by electronic feedback is analyzed. This analysis is applied to a recent experiment that employed a torsion pendulum to measure the Casimir force. The ultimate limit to the distance at which the Casimir force can be measured to high accuracy is discussed, and in particular the prospects for measuring the thermal correction are elaborated upon.Comment: one figure, five pages, to be submitted to Phys Rev

    Shot noise suppression in multimode ballistic Fermi conductors

    Full text link
    We have derived a general formula describing current noise in multimode ballistic channels connecting source and drain electrodes with Fermi electron gas. In particular (at eVkBTeV\gg k_{B}T), the expression describes the nonequilibrium ''shot'' noise, which may be suppressed by both Fermi correlations and space charge screening. The general formula has been applied to an approximate model of a 2D nanoscale, ballistic MOSFET. At large negative gate voltages, when the density of electrons in the channel is small, shot noise spectral density SI(0)S_{I}(0) approaches the Schottky value 2eI2eI, where II is the average current. However, at positive gate voltages, when the maximum potential energy in the channel is below the Fermi level of the electron source, the noise can be at least an order of magnitude smaller than the Schottky value, mostly due to Fermi effects.Comment: 4 page

    Anomalous Transient Current in Nonuniform Semiconductors

    Full text link
    Nonequilibrium processes in semiconductors are considered with highly nonuniform initial densities of charge carriers. It is shown that there exist such distributions of charge densities under which the electric current through a sample displays quite abnormal behaviour flowing against the applied voltage. The appearance of this negative electric current is a transient phenomenon occurring at the initial stage of the process. After this anomalous negative fluctuation, the electric current becomes normal, i.e. positive as soon as the charge density becomes more uniform. Several possibilities for the practical usage of this effect are suggested.Comment: 1 file, 11 pages, RevTex, no figure

    Stochastic Resonance in Noisy Non-Dynamical Systems

    Get PDF
    We have analyzed the effects of the addition of external noise to non-dynamical systems displaying intrinsic noise, and established general conditions under which stochastic resonance appears. The criterion we have found may be applied to a wide class of non-dynamical systems, covering situations of different nature. Some particular examples are discussed in detail.Comment: 4 pages, RevTex, 3 PostScript figures available upon reques
    corecore