22 research outputs found

    Planar narrow bandpass filter based on Si resonant metasurface

    Get PDF
    Optically resonant dielectric metasurfaces offer unique capability to fully control the wavefront, polarisation, intensity or spectral content of light based on the excitation and interference of different electric and magnetic Mie multipolar resonances. Recent advances of the wide accessibility in nanofabrication and nanotechnologies have led to a surge in the research field of high-quality functional optical metasurfaces which can potentially replace or even outperform conventional optical components with ultra-thin features. Replacing conventional optical filtering components with metasurface technology offers remarkable advantages including lower integration cost, ultra-thin compact configuration, easy combination with multiple functions and less restriction on materials. Here we propose and experimentally demonstrate a planar narrow band-pass filter based on the optical dielectric metasurface composed of Si nanoresonators in array. A broadband transmission spectral valley (around 200 nm) has been realised by combining electric and magnetic dipole resonances adjacent to each other. Meanwhile, we obtain a narrow-band transmission peak by exciting a high-quality leaky mode which is formed by partially breaking a bound state in the continuum generated by the collective longitudinal magnetic dipole resonances in the metasurface. Owing to the in-plane inversion symmetry of our nanostructure, the radiation of this antisymmetric mode is inhibited at far field, manifesting itself a sharp Fano-shape peak in the spectrum. Our proposed metasurface-based filter shows a stable performance for oblique light incidence with small angles (within 10 deg). Our work imply many potential applications of nanoscale photonics devices such as displays, spectroscopy, etc

    Highly-efficient longitudinal second-harmonic generation from doubly-resonant AlGaAs nanoantennas

    No full text
    We design an asymmetric nonlinear optical nanoantenna composed of a dielectric nanodisc and an adjacent nanobar. The proposed composite structure made of AlGaAs exhibits resonant response at both the fundamental and doubled frequencies. Being driven by the strong magnetic dipole resonance at the pump wavelength and a high-quality mode at the harmonic wavelength, the efficient second-harmonic radiation is generated predominantly along the vertical directions under the normally incident plane-wave excitation

    Reversible image contrast manipulation with thermally tunable dielectric metasurfaces

    No full text
    Increasing demand for higher resolution of miniaturized displays requires techniques achieving high contrast tunability of the images. Employing metasurfaces for image contrast manipulation is a new and rapidly growing field of research aiming to address this need. Here, a new technique to achieve image tuning in a reversible fashion is demonstrated by dielectric metasurfaces composed of subwavelength resonators. It is demonstrated that by controlling the temperature of a metasurface the encoded transmission pattern can be tuned. To this end, two sets of nanoresonators composed of nonconcentric silicon disks with a hole that exhibit spectrally sharp Fano resonances and forming a Yin‐Yang pattern are designed and fabricated. Through exploitation of the thermo‐optical properties of silicon, full control of the contrast of the Yin‐Yang image is demonstrated by altering the metasurface temperature by ΔT ≈ 100 °C. This is the first demonstrated technique to control an image contrast by temperature. Importantly, the turning technique does not require manipulating the external stimulus, such as polarization or angle of the illumination and/or the refractive index of this environment. These results open many opportunities for transparent displays, optical switches, and tunable illumination systems.The authors acknowledge the funding support provided by the Australian Research Council (ARC). M.R. sincerely appreciates funding from ARC Discover Early Career Research Fellowship (DE170100250) and The Australian Nanotechnology Network. M.R. and A.E.M. appreciate funding from Australia-Germany Joint Research Cooperation Scheme. G.L. was supported by Guangdong Provincial Innovation and Entrepreneurship Project (2017ZT07C071)

    Experimental study on thermo-physical and rheological properties of stable and green reduced graphene oxide nanofluids: Hydrothermal assisted technique

    No full text
    In this study a dehydration hydrothermal technique has been used to introduce a simple, environmentally friendly and facile method for manufacturing highly dispersed reduced graphene oxide for improving the thermo-physical and rheological properties of heat transfer liquids. The hydrothermal reduction of graphene oxide was verified by various characterizations methods such as UV–visible absorption spectroscopy, Zeta potential, Raman spectroscopy, X-ray photoemission spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. A thorough investigation was conducted on the thermo-physical properties of reduced graphene oxide at concentrations of 0.02, 0.04, 0.06, and 0.08 wt% under different temperatures. Significant improvements in electrical and thermal conductivity were obtained by adding a small amount of hydrothermal-assisted reduced graphene oxide (h-rGO) in the suspension. The viscosity and density remained relatively unchanged with the increase of concentrations where the pH was maintained within the desirable value, despite the fact that no additive was used during the reduction process. It is noteworthy to highlight that the h-rGO aqueous suspensions have shown Newtonian behavior. Results indicated that the h-rGO could be employed as a promising additive for conventional heat transfer liquids for different thermal applications

    Amalgamation based optical and colorimetric sensing of mercury(II) ions with silver@graphene oxide nanocomposite materials

    No full text
    The article describes a facile method for the preparation of a conjugate composed of silver nanoparticles and graphene oxide (Ag@GO) via chemical reduction of silver precursors in the presence of graphene oxide (GO) while sonicating the solution. The Ag@GO was characterized by X-ray photoelectron spectroscopy, X-ray powder diffraction, and energy-dispersive X-ray spectroscopy. The nanocomposite undergoes a color change from yellow to colorless in presence of Hg(II), and this effect is based on the disappearance of the localized surface plasmon resonance absorption of the AgNPs due to the formation of silver-mercury amalgam. The presence of GO, on the other hand, prevents the agglomeration of the AgNPs and enhances the stability of the nanocomposite material in solution. Hence, the probe represents a viable optical probe for the determination of mercury(II) ions in that it can be used to visually detect Hg(II) concentrations as low as 100 μM. The instrumental LOD is 338 nM

    Tunable unidirectional nonlinear emission from transition-metal-dichalcogenide metasurfaces

    No full text
    oai:iris.unibs.it:11379/590605Nonlinear light sources are central to a myriad of applications, driving a quest for their miniaturisation down to the nanoscale. In this quest, nonlinear metasurfaces hold a great promise, as they enhance nonlinear effects through their resonant photonic environment and high refractive index, such as in high-index dielectric metasurfaces. However, despite the sub-diffractive operation of dielectric metasurfaces at the fundamental wave, this condition is not fulfilled for the nonlinearly generated harmonic waves, thereby all nonlinear metasurfaces to date emit multiple diffractive beams. Here, we demonstrate the enhanced single-beam second- and third-harmonic generation in a metasurface of crystalline transition-metal-dichalcogenide material, offering the highest refractive index. We show that the interplay between the resonances of the metasurface allows for tuning of the unidirectional second-harmonic radiation in forward or backward direction, not possible in any bulk nonlinear crystal. Our results open new opportunities for metasurface-based nonlinear light-sources, including nonlinear mirrors and entangled-photon generation

    Dynamic Nonlinear Image Tuning through Magnetic Dipole Quasi-BIC Ultrathin Resonators

    Get PDF
    Dynamical tuning of the nonlinear optical wavefront allows for a specific spectral response of predefined profiles, enabling various applications of nonlinear nanophotonics. This study experimentally demonstrates the dynamical switching of images generated by an ultrathin silicon nonlinear metasurface supporting a high-quality leaky mode, which is formed by partially breaking a bound-state-in-the-continuum (BIC) generated by the collective magnetic dipole (MD) resonance excited in the subdiffractive periodic systems. Such a quasi-BIC MD state can be excited directly under normal plane wave incidence and leads to a strong near-field enhancement to further boost the nonlinear process, resulting in a 500-fold enhancement of the third-harmonic emission experimentally. Due to sharp spectral features and asymmetry of the unit cell, it allows for effective tailoring of the nonlinear emissions over spectral or polarization responses. Dynamical nonlinear image tuning is experimentally demonstarted via polarization and wavelength control. The results pave the way for nanophotonics applications such as tunable displays, nonlinear holograms, tunable nanolaser, and ultrathin nonlinear nanodevices with various functionalities
    corecore