888 research outputs found

    More on the Isomorphism SU(2)⊗SU(2)≅SO(4)SU(2)\otimes SU(2)\cong SO(4)

    Full text link
    In this paper we revisit the isomorphism SU(2)⊗SU(2)≅SO(4)SU(2)\otimes SU(2)\cong SO(4) to apply to some subjects in Quantum Computation and Mathematical Physics. The unitary matrix QQ by Makhlin giving the isomorphism as an adjoint action is studied and generalized from a different point of view. Some problems are also presented. In particular, the homogeneous manifold SU(2n)/SO(2n)SU(2n)/SO(2n) which characterizes entanglements in the case of n=2n=2 is studied, and a clear-cut calculation of the universal Yang-Mills action in (hep-th/0602204) is given for the abelian case.Comment: Latex ; 19 pages ; 5 figures ; minor changes. To appear in International Journal of Geometric Methods in Modern Physics (vol.4, no.3

    CoFeB Thickness Dependence of Thermal Stability Factor in CoFeB/MgO Perpendicular Magnetic Tunnel Junctions

    Full text link
    Thermal stability factor (delta) of recording layer was studied in perpendicular anisotropy CoFeB/MgO magnetic tunnel junctions (p-MTJs) with various CoFeB recording layer thicknesses and junction sizes. In all series of p-MTJs with different thicknesses, delta is virtually independent of the junction sizes of 48-81 nm in diameter. The values of delta increase linearly with increasing the recording layer thickness. The slope of the linear fit is explained well by a model based on nucleation type magnetization reversal.Comment: 12 pages, 5 figure

    Optical nonlinearity enhancement of graded metallic films

    Full text link
    The effective linear and third-order nonlinear susceptibility of graded metallic films with weak nonlinearity have been investigated. Due to the simple geometry, we were able to derive exactly the local field inside the graded structures having a Drude dielectric gradation profile. We calculated the effective linear dielectric constant and third-order nonlinear susceptibility. We investigated the surface plasmon resonant effect on the optical absorption, optical nonlinearity enhancement, and figure of merit of graded metallic films. It is found that the presence of gradation in metallic films yields a broad resonant plasmon band in the optical region, resulting in a large enhancement of the optical nonlinearity and hence a large figure of merit. We suggest experiments be done to check our theoretical predictions, because graded metallic films can be fabricated more easily than graded particles.Comment: 11 pages, 2 eps figures, submitted to Applied Physics Letter

    Strong fields induce ultrafast rearrangement of H-atoms in H2_2O

    Full text link
    H-atoms in H2_2O are rearranged by strong optical fields generated by intense, 10 fs laser pulses to form H2+_2^+, against prevailing wisdom that strong fields inevitably lead to multiple molecular ionization and the subsequent Coulomb explosion into fragments. This atomic rearrangement is shown to occur within a single 10 fs pulse. Comparison with results obtained with ∼\sim300-attosecond long strong fields generated using fast Si8+^{8+} ions helps establish thresholds for field strength and time required for such rearrangements. Quantum-chemical calculations reveal that H2+_2^+ originates in the 1^1A state of H2_2O2+^{2+} when the O-H bond elongates to 1.15 a.u. and the H-O-H angle becomes 120o^o. Bond formation on the ultrafast timescale of molecular vibrations (10 fs for H2+_2^+) has hitherto not been reported.Comment: Submitted to Physical Review Lotter

    Measurement of black carbon at Syowa station, Antarctica: seasonal variation, transport processes and pathways

    No full text
    International audienceMeasurement of black carbon (BC) was carried out at Syowa station Antarctica (69° S, 39° E) from February 2004 until January 2007. The BC concentration at Syowa ranged from below detection to 176 ng m?3 during the measurements. Higher BC concentrations were observed mostly under strong wind (blizzard) conditions due to the approach of a cyclone and blocking event. The BC-rich air masses traveled from the lower troposphere of the Atlantic and Indian Oceans to Syowa (Antarctic coast). During the summer (November?February), the BC concentration showed a diurnal variation together with surface wind speed and increased in the katabatic wind from the Antarctic continent. Considering the low BC source strength in the Antarctic continent, the higher BC concentration in the continental air (katabatic wind) might be caused by long range transport of BC via the free troposphere from mid- and low- latitudes. The seasonal variation of BC at Syowa had a maximum in August, while at the other coastal stations (Halley, Neumayer, and Ferraz) and the continental station (Amundsen-Scott), the maximum occurred in October. This difference may result from different transport pathways and scavenging of BC by precipitation during the transport from the source regions. During the austral summer, long-range transport of BC via the free troposphere is likely to make an important contribution to the ambient BC concentration. The BC transport flux indicated that BC injection into the Antarctic region strongly depended on the frequency of storm (blizzard) conditions. The seasonal variation of BC transport flux increased by 290 mg m?2 month?1 in winter?spring when blizzards frequently occurred, whereas the flux decreased to lower than 50 mg m?2 month?1 in the summer with infrequent blizzards

    Quantum dynamics of proton migration in H2O dications: formation of H2+ on ultrafast timescales

    Full text link
    Irradiation of isolated water molecules by few-cycle pulses of intense infrared laser light can give rise to ultrafast rearrangement resulting in formation of the H2+ ion. Such unimolecular reactions occur on the potential energy surface of the H2O2+ dication that is accessed when peak laser intensities in the 1015 W cm-2 range and pulse durations as short as 9-10 fs are used; ion yields of ~1.5% are measured. We also study such reactions by means of time-dependent wavepacket dynamics on an ab initio potential energy surface of the dication and show that a proton, generated from O-H bond rupture, migrates towards the H-atom, and forms vibrationally-excited H2+ in a well-defined spatial zone.Comment: To appear in J. Chem. Phys. (tentatively the 22 January 2012 issue

    Optical nonlinearity enhancement of graded metal-dielectric composite films

    Full text link
    We have derived the local electric field inside graded metal-dielectric composite films with weak nonlinearity analytically, which further yields the effective linear dielectric constant and third-order nonlinear susceptibility of the graded structures. As a result, the composition-dependent gradation can produce a broad resonant plasmon band in the optical region, resulting in a large enhancement of the optical nonlinearity and hence a large figure of merit.Comment: 11 pages, 2 figures. To be published in Europhysics Letter

    Spectral representation of the effective dielectric constant of graded composites

    Full text link
    We generalize the Bergman-Milton spectral representation, originally derived for a two-component composite, to extract the spectral density function for the effective dielectric constant of a graded composite. This work has been motivated by a recent study of the optical absorption spectrum of a graded metallic film [Applied Physics Letters, 85, 94 (2004)] in which a broad surface-plasmon absorption band has been shown to be responsible for enhanced nonlinear optical response as well as an attractive figure of merit. It turns out that, unlike in the case of homogeneous constituent components, the characteristic function of a graded composite is a continuous function because of the continuous variation of the dielectric function within the constituent components. Analytic generalization to three dimensional graded composites is discussed, and numerical calculations of multilayered composites are given as a simple application.Comment: Physical Review E, submitted for publication
    • …
    corecore