7,446 research outputs found

    Remote Preparation of Mixed States via Noisy Entanglement

    Full text link
    We present a practical and general scheme of remote preparation for pure and mixed state, in which an auxiliary qubit and controlled-NOT gate are used. We discuss the remote state preparation (RSP) in two important types of decoherent channel (depolarizing and dephaseing). In our experiment, we realize RSP in the dephaseing channel by using spontaneous parametric down conversion (SPDC), linear optical elements and single photon detector.Comment: 10 pages, 5 figures, submitted to PR

    Probing the tidal disruption flares of massive black holes with high-energy neutrinos

    Get PDF
    The recently discovered high-energy transient Swift J164449.3+573451 (Sw J1644+57) is thought to arise from the tidal disruption of a passing star by a dormant massive black hole. Modeling of the broadband emission suggests the presence of a powerful relativistic jet, which contributes dominantly to the observed X-ray emission. Here we suggest that protons can be accelerated to ultra-high energies by internal shocks occurring in the jets, but their flux is insufficient to account for the observed flux of ultra-high energy cosmic rays. High energy protons can produce ~0.1-10 PeV neutrinos through photomeson interactions with X-ray photons. The large X-ray fluence (7x10^-4 erg cm^-2) and high photopion efficiency, together with the insignificant cooling of secondary mesons, result in bright neutrino emission expected from Sw J1644+57 if the jet composition is matter-dominated. One to several neutrinos may be detected by a Km^3-scale detector from one tidal disruption event similar to Sw J1644+57, thereby providing a powerful probe of the composition of the jets.Comment: 5 pages, 2 figures, accepted for publication as a Rapid Communication in Physical Review D, abstract slightly extende

    Varying the forcing scale in low Prandtl number dynamos

    Get PDF
    Small-scale dynamos are expected to operate in all astrophysical fluids that are turbulent and electrically conducting, for example the interstellar medium, stellar interiors, and accretion disks, where they may also be affected by or competing with large-scale dynamos. However, the possibility of small-scale dynamos being excited at small and intermediate ratios of viscosity to magnetic diffusivity (the magnetic Prandtl number) has been debated, and the possibility of them depending on the large-scale forcing wavenumber has been raised. Here we show, using four values of the forcing wavenumber, that the small-scale dynamo does not depend on the scale-separation between the size of the simulation domain and the integral scale of the turbulence, i.e., the forcing scale. Moreover, the spectral bottleneck in turbulence, which has been implied as being responsible for raising the excitation conditions of small-scale dynamos, is found to be invariant under changing the forcing wavenumber. However, when forcing at the lowest few wavenumbers, the effective forcing wavenumber that enters in the definition of the magnetic Reynolds number is found to be about twice the minimum wavenumber of the domain. Our work is relevant to future studies of small-scale dynamos, of which several applications are being discussed.Comment: 8 pages, 5 figures, MNRAS, resubmitte

    Information loss in local dissipation environments

    Full text link
    The sensitivity of entanglement to the thermal and squeezed reservoirs' parameters is investigated regarding entanglement decay and what is called sudden-death of entanglement, ESD, for a system of two qubit pairs. The dynamics of information is investigated by means of the information disturbance and exchange information. We show that for squeezed reservoir, we can keep both of the entanglement and information survival for a long time. The sudden death of information is seen in the case of thermal reservoir

    A Unified Quantum NOT Gate

    Full text link
    We study the feasibility of implementing a quantum NOT gate (approximate) when the quantum state lies between two latitudes on the Bloch's sphere and present an analytical formula for the optimized 1-to-MM quantum NOT gate. Our result generalizes previous results concerning quantum NOT gate for a quantum state distributed uniformly on the whole Bloch sphere as well as the phase covariant quantum state. We have also shown that such 1-to-MM optimized NOT gate can be implemented using a sequential generation scheme via matrix product states (MPS)

    Chandra Observation of the Cluster of Galaxies MS 0839.9+2938 at z=0.194: the Central Excess Iron and SN Ia Enrichment

    Full text link
    We present the Chandra study of the intermediately distant cluster of galaxies MS 0839.9+2938. By performing both the projected and deprojected spectral analyses, we find that the gas temperature is approximately constant at about 4 keV in 130-444h_70^-1 kpc. In the inner regions, the gas temperature descends towards the center, reaching <~ 3 keV in the central 37h_70^-1 kpc. This infers that the lower and upper limits of the mass deposit rate are 9-34 M_sun yr^-1 and 96-126 M_sun yr^-1, respectively within 74h_70^-1 kpc where the gas is significantly colder. Along with the temperature drop, we detect a significant inward iron abundance increase from about 0.4 solar in the outer regions to about 1 solar within the central 37h_70^-1 kpc. Thus MS 0839.9+2938 is the cluster showing the most significant central iron excess at z>~ 0.2. We argue that most of the excess iron should have been contributed by SNe Ia. By utilizing the observed SN Ia rate and stellar mass loss rate, we estimate that the time needed to enrich the central region with excess iron is 6.4-7.9 Gyr, which is similar to those found for the nearby clusters. Coinciding with the optical extension of the cD galaxy (up to about 30h_70^-1 kpc), the observed X-ray surface brightness profile exhibits an excess beyond the distribution expected by either the beta model or the NFW model, and can be well fitted with an empirical two-beta model that leads to a relatively flatter mass profile in the innermost region.Comment: Accepted for publication in Ap

    Low energy physical properties of high-Tc superconducting Cu oxides: A comparison between the resonating valence bond and experiments

    Full text link
    In a recent review by Anderson and coworkers\cite{Vanilla}, it was pointed out that an early resonating valence bond (RVB) theory is able to explain a number of unusual properties of high temperature superconducting (SC) Cu-oxides. Here we extend previous calculations \cite{anderson87,FC Zhang,Randeria} to study more systematically low energy physical properties of the plain vanilla d-wave RVB state, and to compare results with the available experiments. We use a renormalized mean field theory combined with variational Monte Carlo and power Lanczos methods to study the RVB state of an extended tJt-J model in a square lattice with parameters suitable for the hole doped Cu-oxides. The physical observable quantities we study include the specific heat, the linear residual thermal conductivity, the in-plane magnetic penetration depth, the quasiparticle energy at the antinode (π,0)(\pi, 0), the superconducting energy gap, the quasiparticle spectra and the Drude weight. The traits of nodes (including kFk_{F}, the Fermi velocity vFv_{F} and the velocity along Fermi surface v2v_{2}), as well as the SC order parameter are also studied. Comparisons of the theory and the experiments in cuprates show an overall qualitative agreement, especially on their doping dependences.Comment: 12 pages, 14 figures, 1 tabl

    Scale-free download network for publications

    Full text link
    The scale-free power-law behavior of the statistics of the download frequency of publications has been, for the first time, reported. The data of the download frequency of publications are taken from a well-constructed web page in the field of economic physics (http://www.unifr.ch/econophysics/). The Zipf-law analysis and the Tsallis entropy method were used to fit the download frequency. It was found that the power-law exponent of rank-ordered frequency distribution is γ0.38±0.04\gamma \sim 0.38 \pm 0.04 which is consistent with the power-law exponent α3.37±0.45\alpha \sim 3.37 \pm 0.45 for the cumulated frequency distributions. Preferential attachment model of Barabasi and Albert network has been used to explain the download network.Comment: 3 pages, 2 figure
    corecore