728 research outputs found

    A cytoplasmic Slo3 isoform is expressed in somatic tissues

    Get PDF
    Slo3 is a pH-sensitive and weakly voltage-sensitive potassium channel that is essential for male fertility in mouse and whose expression is regarded as sperm-specific. These properties have proposed Slo3 as a candidate target for male contraceptive drugs. Nonetheless, the tissue distribution of Slo3 expression has not been rigorously studied yet. Applying computational and RT-PCR approaches, we identified expression of two short Slo3 isoforms in somatic mouse tissues such as brain, kidney and eye. These isoforms, which seem to result of transcription starting sites between exons 20 and 21, have an identical open reading frame, both encoding the terminal 381 amino acids of the cytosolic Slo3 domain. We corroborated the expression of these isoforms in mouse brain and testis by Western-blot. The complete isoform encoding the Slo3 ion channel was uniquely detected in testis, both at transcript and protein level. Although the functional role of the cytosolic Slo3 isoforms remains to be established, we propose that they may have a functional effect by modulating Slo channels trafficking and/or activity. This study confirms that expression of full-length Slo3 is sperm-specific but warns against developing contraceptive drugs targeting the C-terminal tail of Slo3 channels

    Effect of intermolecular interactions on the glass transition temperature of chemically modified alternating polyketones

    Get PDF
    Thermal properties of polymers depend on the chemical structure of the polymer chain and intermolecular forces arising from hydrogen bonding and π-π stacking. Here we analyzed the effect of increasing the amount of supramolecular interactions on the glass transition temperature of polyketones by chemically modifying the same polymer backbone with five amine derivatives, namely (1-(3-aminopropyl)-imidazole, 4-(aminomethyl) benzoic acid, 6-aminohexanoic acid, benzylamine or hexylamine, at various molar concentrations. The grafting was performed via the Paal-Knorr reaction and the interactions between the pyrrole backbone and different grafted functional groups were elucidated by proton nuclear magnetic resonance, Fourier transform infrared and X-ray photoelectron spectroscopy as well as differential scanning calorimetry and computational modeling. The modification of polyketone with 4-(aminomethyl) benzoic acid and 6-aminohexanoic acid, allowed for new possibilities of hydrogen bonding and led to a significant increase in the glass transition temperature as compared to the neat polymer and pyrrole-containing polymers that did not bear reactive side groups. In contrast, modification with the imidazole derivative was found to introduce new and more robust CH⋯π interactions between imidazole groups and the π-system of the pyrrole backbone chain, based on electrostatic effects. Both types of supramolecular interactions affect the mobility of the backbone chains and this systematic study demonstrates how the combined effect of π-π stacking and hydrogen bonding to carboxylate moieties can be used to tune the molecular mobility and phase transition temperature of these chemically modified polyketones.</p

    HLA-B-associated transcript 3 (Bat3/Scythe) negatively regulates Smad phosphorylation in BMP signaling

    Get PDF
    Members of the transforming growth factor-β (TGF-β) superfamily participate in numerous biological phenomena in multiple tissues, including in cell proliferation, differentiation, and migration. TGF-β superfamily proteins therefore have prominent roles in wound healing, fibrosis, bone formation, and carcinogenesis. However, the molecular mechanisms regulating these signaling pathways are not fully understood. Here, we describe the regulation of bone morphogenic protein (BMP) signaling by Bat3 (also known as Scythe or BAG6). Bat3 overexpression in murine cell lines suppresses the activity of the Id1 promoter normally induced by BMP signaling. Conversely, Bat3 inactivation enhances the induction of direct BMP target genes, such as Id1, Smad6, and Smad7. Consequently, Bat3 deficiency accelerates the differentiation of primary osteoblasts into bone, with a concomitant increase in the bone differentiation markers Runx2, Osterix, and alkaline phosphatase. Using biochemical and cell biological analyses, we show that Bat3 inactivation sustains the C-terminal phosphorylation and nuclear localization of Smad1, 5, and 8 (Smad1/5/8), thereby enhancing biological responses to BMP treatment. At the mechanistic level, we show that Bat3 interacts with the nuclear phosphatase small C-terminal domain phosphatase (SCP) 2, which terminates BMP signaling by dephosphorylating Smad1/5/8. Notably, Bat3 enhances SCP2–Smad1 interaction only when the BMP signaling pathway is activated. Our results demonstrate that Bat3 is an important regulator of BMP signaling that functions by modulating SCP2–Smad interaction

    Degradation of biological macromolecules supports uncultured microbial populations in Guaymas Basin hydrothermal sediments

    Get PDF
    Hydrothermal sediments contain large numbers of uncultured heterotrophic microbial lineages. Here, we amended Guaymas Basin sediments with proteins, polysaccharides, nucleic acids or lipids under different redox conditions and cultivated heterotrophic thermophiles with the genomic potential for macromolecule degradation. We reconstructed 20 metagenome-assembled genomes (MAGs) of uncultured lineages affiliating with known archaeal and bacterial phyla, including endospore-forming Bacilli and candidate phylum Marinisomatota. One Marinisomatota MAG had 35 different glycoside hydrolases often in multiple copies, seven extracellular CAZymes, six polysaccharide lyases, and multiple sugar transporters. This population has the potential to degrade a broad spectrum of polysaccharides including chitin, cellulose, pectin, alginate, chondroitin, and carrageenan. We also describe thermophiles affiliating with the genera Thermosyntropha, Thermovirga, and Kosmotoga with the capability to make a living on nucleic acids, lipids, or multiple macromolecule classes, respectively. Several populations seemed to lack extracellular enzyme machinery and thus likely scavenged oligo- or monomers (e.g., MAGs affiliating with Archaeoglobus) or metabolic products like hydrogen (e.g., MAGs affiliating with Thermodesulfobacterium or Desulforudaceae). The growth of methanogens or the production of methane was not observed in any condition, indicating that the tested macromolecules are not degraded into substrates for methanogenesis in hydrothermal sediments. We provide new insights into the niches, and genomes of microorganisms that actively degrade abundant necromass macromolecules under oxic, sulfate-reducing, and fermentative thermophilic conditions. These findings improve our understanding of the carbon flow across trophic levels and indicate how primary produced biomass sustains complex and productive ecosystems

    Clades of huge phages from across Earth's ecosystems

    Get PDF
    Bacteriophages typically have small genomes and depend on their bacterial hosts for replication. Here we sequenced DNA from diverse ecosystems and found hundreds of phage genomes with lengths of more than 200 kilobases (kb), including a genome of 735 kb, which is-to our knowledge-the largest phage genome to be described to date. Thirty-five genomes were manually curated to completion (circular and no gaps). Expanded genetic repertoires include diverse and previously undescribed CRISPR-Cas systems, transfer RNAs (tRNAs), tRNA synthetases, tRNA-modification enzymes, translation-initiation and elongation factors, and ribosomal proteins. The CRISPR-Cas systems of phages have the capacity to silence host transcription factors and translational genes, potentially as part of a larger interaction network that intercepts translation to redirect biosynthesis to phage-encoded functions. In addition, some phages may repurpose bacterial CRISPR-Cas systems to eliminate competing phages. We phylogenetically define the major clades of huge phages from human and other animal microbiomes, as well as from oceans, lakes, sediments, soils and the built environment. We conclude that the large gene inventories of huge phages reflect a conserved biological strategy, and that the phages are distributed across a broad bacterial host range and across Earth's ecosystems

    Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria

    Get PDF
    Abstract Background Estuaries are among the most productive habitats on the planet. Bacteria in estuary sediments control the turnover of organic carbon and the cycling of nitrogen and sulfur. These communities are complex and primarily made up of uncultured lineages, thus little is known about how ecological and metabolic processes are partitioned in sediments. Results De novo assembly and binning resulted in the reconstruction of 82 bacterial genomes from different redox regimes of estuary sediments. These genomes belong to 23 bacterial groups, including uncultured candidate phyla (for example, KSB1, TA06, and KD3-62) and three newly described phyla (White Oak River (WOR)-1, WOR-2, and WOR-3). The uncultured phyla are generally most abundant in the sulfate-methane transition (SMTZ) and methane-rich zones, and genomic data predict that they mediate essential biogeochemical processes of the estuarine environment, including organic carbon degradation and fermentation. Among the most abundant organisms in the sulfate-rich layer are novel Gammaproteobacteria that have genes for the oxidation of sulfur and the reduction of nitrate and nitrite. Interestingly, the terminal steps of denitrification (NO3 to N2O and then N2O to N2) are present in distinct bacterial populations. Conclusions This dataset extends our knowledge of the metabolic potential of several uncultured phyla. Within the sediments, there is redundancy in the genomic potential in different lineages, often distinct phyla, for essential biogeochemical processes. We were able to chart the flow of carbon and nutrients through the multiple geochemical layers of bacterial processing and reveal potential ecological interactions within the communities.http://deepblue.lib.umich.edu/bitstream/2027.42/111044/1/40168_2015_Article_77.pd
    corecore