245 research outputs found

    The Fusion-by-Diffusion model as a tool to calculate cross sections for the production of superheavy nuclei

    Full text link
    This article summarizes recent progress in our understanding of the reaction mechanisms leading to the formation of superheavy nuclei in cold and hot fusion reactions. Calculations are done within the Fusion-by-Diffusion (FBD) model using the new nuclear data tables by Jachimowicz et al. [At. Data Nucl. Data Tables 138, 101393 (2021)]. The synthesis reaction is treated in a standard way as a three-step process (i.e., capture, fusion, and survival). Each reaction step is analyzed separately. Model calculations are compared with selected experimental data on capture, fissionlike and fusion cross sections, fusion probabilities, and evaporation residue excitation functions. The role of the angular momentum in the fusion step is discussed in detail. A set of fusion excitation functions with corresponding fusion probabilities is provided for cold and hot synthesis reactions.Comment: submitted to EPJ A Topical Issue: Heavy and Super-Heavy Nuclei and Elements: Production and Propertie

    Morphometric characteristics of the small and large intestines of Mus musculus during postnatal development

    Get PDF
    The objective of this study was to investigate the size of the small and large intestine in postnatal development of Mus musculus mice. The gut was obtained from 2-, 4-, 6-, and 12-week-old animals. The morphometric analysis was performed at microscopic level. Measurements and calculations included dimensions of villi (height, diameter) and their number per 1 mm2 surface area in the proximal, middle, and distal section of the small intestine, as well as the length and surface area (external and internal) of the small and large intestines. To find the allometric relationship between the size of the small and large intestines and body mass, reduced major axis regression was applied. The length and surface area of both intestinal segments gradually increased with age. The increase in the internal surface area of the small intestine was the result of lengthening of the intestine and increasing diameter of the villi in its proximal and middle sections. No increase in villus height during the studied period was detected. A marked increase in the size of the intestinal segments was observed between the 2nd and 4th weeks of life, when the length doubled and the surface area tripled in size. Allometric analysis revealed that the increase in length and internal surface area of the small and large intestines was more rapid than the body mass increase during the weaning period, while it was not different from isometry after the weaning. In conclusion, the greatest changes in the structure and size of the small and large intestines of mice occurred in the weaning period. During this period these two segments of intestine grew faster than the rest of the body and reached adult proportions. (Folia Morphol 2011; 70, 4: 252–259

    Scaling Laws and Transient Times in 3He Induced Nuclear Fission

    Full text link
    Fission excitation functions of compound nuclei in a mass region where shell effects are expected to be very strong are shown to scale exactly according to the transition state prediction once these shell effects are accounted for. The fact that no deviations from the transition state method have been observed within the experimentally investigated excitation energy regime allows one to assign an upper limit for the transient time of 10 zs.Comment: 7 pages, TeX type, psfig, submitted to Phys. Rev. C, also available at http://csa5.lbl.gov/moretto/ps/he3_paper.p

    Two-proton small-angle correlations in central heavy-ion collisions: a beam-energy and system-size dependent study

    Full text link
    Small-angle correlations of pairs of protons emitted in central collisions of Ca + Ca, Ru + Ru and Au + Au at beam energies from 400 to 1500 MeV per nucleon are investigated with the FOPI detector system at SIS/GSI Darmstadt. Dependences on system size and beam energy are presented which extend the experimental data basis of pp correlations in the SIS energy range substantially. The size of the proton-emitting source is estimated by comparing the experimental data with the output of a final-state interaction model which utilizes either static Gaussian sources or the one-body phase-space distribution of protons provided by the BUU transport approach. The trends in the experimental data, i.e. system-size and beam energy dependences, are well reproduced by this hybrid model. However, the pp correlation function is found rather insensitive to the stiffness of the equation of state entering the transport model calculations.Comment: 9 pages, 8 figures, accepted at Eur. Phys. Journ.

    Strange meson production in Al+Al collisions at 1.9A GeV

    Full text link
    The production of K+^+, K^- and φ\varphi(1020) mesons is studied in Al+Al collisions at a beam energy of 1.9A GeV which is close or below the production threshold in NN reactions. Inverse slopes, anisotropy parameters, and total emission yields of K±^{\pm} mesons are obtained. A comparison of the ratio of kinetic energy distributions of K^- and K+^+ mesons to the HSD transport model calculations suggests that the inclusion of the in-medium modifications of kaon properties is necessary to reproduce the ratio. The inverse slope and total yield of ϕ\phi mesons are deduced. The contribution to K^- production from ϕ\phi meson decays is found to be [17 ±\pm 3 (stat) 7+2^{+2}_{-7} (syst)] %. The results are in line with previous K±^{\pm} and ϕ\phi data obtained for different colliding systems at similar incident beam energies.Comment: 16 pages, 11 figure

    Measurement of K(892)0K^*(892)^0 and K0K^0 mesons in Al+Al collisions at 1.9AA GeV

    Full text link
    New measurement of sub-threshold K(892)0K^*(892)^0 and K0K^0 production is presented. The experimental data complete the measurement of strange particles produced in Al+Al collisions at 1.9AA GeV measured with the FOPI detector at SIS/GSI. The K(892)0K^*(892)^0 / K0K^0 yield ratio is found to be 0.0315±0.006(stat.)±0.012(syst.)0.0315\pm 0.006 (\mathrm{stat.})\pm 0.012 (\mathrm{syst.}) and is in good agreement with the UrQMD model prediction. These measurements provide information on in-medium cross section of K+K^+ - π\pi^- fusion which is the dominant process on sub-threshold K(892)0K^*(892)^0 production.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev.

    Charged pion production in 4496^{96}_{44}Ru+4496^{96}_{44}Ru collisions at 400A and 1528A MeV

    Full text link
    We present transverse momentum and rapidity spectra of charged pions in central Ru + Ru collisions at 400AA and 1528AA MeV. The data exhibit enhanced production at low transverse momenta compared to the expectations from the thermal model that includes the decay of Δ(1232)\Delta(1232)-resonances and thermal pions. Modification of the Δ\Delta-spectral function and the Coulomb interaction are necessary to describe the detailed shape of the transverse momentum spectra. Within the framework of the thermal model, the freeze-out radii of pions are similar at both beam energies. The IQMD model reproduces the shapes of the transverse momentum and rapidity spectra of pions, but the predicted absolute yields are larger than in the measurements, especially at lower beam energy.Comment: 12 pages, 11 figure

    Centrality dependence of subthreshold ϕ\phi meson production in Ni+Ni collisions at 1.9A GeV

    Full text link
    We analysed the ϕ\phi meson production in central Ni+Ni collisions at the beam kinetic energy of 1.93A GeV with the FOPI spectrometer and found the production probability per event of [8.6 ± 1.6 (stat)±1.5 (syst)]×104[8.6 ~\pm~ 1.6 ~(\text{stat}) \pm 1.5 ~(\text{syst})] \times 10^{-4}. This new data point allows for the first time to inspect the centrality dependence of the subthreshold ϕ\phi meson production in heavy-ion collisions. The rise of ϕ\phi meson multiplicity per event with mean number of participants can be parameterized by the power function with exponent α=1.8±0.6\alpha = 1.8 \pm 0.6. The ratio of ϕ\phi to K\text{K}^- production yields seems not to depend within the experimental uncertainties on the collision centrality, and the average of measured values was found to be 0.36±0.050.36 \pm 0.05.Comment: 9 pages, 5 figure
    corecore