163 research outputs found

    11 262 keV 1+ state in 20Ne

    Get PDF
    The excitation energy of the lowest 1+, T=1 state in 20Ne, which is important for parity nonconservation studies, has been determined in a photon scattering experiment to be 11 262.3 ± 1.9 keV. Values for the gamma -ray branching of this level to the ground state and to the first 2+ level in 20Ne are 84 ± 5% and 16 ± 5%, respectively. NUCLEAR REACTIONS 20Ne( gamma , gamma ), E gamma <18 MeV, bremsstrahlung; measured E gamma , gamma branching. Ne natural targets

    [11C]-l-Methionine positron emission tomography in the management of children and young adults with brain tumors

    Get PDF
    Only a few Methyl-[11C]-l-methionine (MET) positron emission tomography (PET) studies have focused on children and young adults with brain neoplasm. Due to radiation exposure, long scan acquisition time, and the need for sedation in young children MET-PET studies should be restricted to this group of patients when a decision for further therapy is not possible from routine diagnostic procedures alone, e.g., structural imaging. We investigated the diagnostic accuracy of MET-PET for the differentiation between tumorous and non-tumorous lesions in this group of patients. Forty eight MET-PET scans from 39 patients aged from 2 to 21 years (mean 15 ± 5.0 years) were analyzed. The MET tumor-uptake relative to a corresponding control region was calculated. A receiver operating characteristic (ROC) was performed to determine the MET-uptake value that best distinguishes tumorous from non-tumorous brain lesions. A differentiation between tumorous (n = 39) and non-tumorous brain lesions (n = 9) was possible at a threshold of 1.48 of relative MET-uptake with a sensitivity of 83% and a specificity of 92%, respectively. A differentiation between high grade malignant lesions (mean MET-uptake = 2.00 ± 0.46) and low grade tumors (mean MET-uptake = 1.84 ± 0.31) was not possible. There was a significant difference in MET-uptake between the histologically homogeneous subgroups of astrocytoma WHO grade II and anaplastic astrocytoma WHO grade III (P = 0.02). MET-PET might be a useful tool to differentiate tumorous from non-tumorous lesions in children and young adults when a decision for further therapy is difficult or impossible from routine structural imaging procedures alone

    16O( gamma ,p) 15N reaction with linearly polarized photons

    Get PDF
    The 16O ( gamma ,p0) reaction has been studied with linearly polarized bremsstrahlung photons in and below the giant E1 resonance. The parity of the absorbed radiation was determined from the observed azimuthal asymmetry of the emitted protons. Combined with unpolarized measurements the polarized results determine the proton decay amplitudes of the M1 resonance at Ex=16.2 MeV in 16O. The shape of the unpolarized 16O ( gamma ,p3) angular distribution in the giant E1 resonance was derived from the measured analyzing power. NUCLEAR REACTIONS 16O( gamma ,p), E=15-25 MeV; measured analyzing power theta =90° linearly polarized bremsstrahlung; 16O dipole levels deduced pi ; 16.2 MeV 1+ resonance deduced p0 decay amplitudes; 16O GEDR deduced p3 angular distribution

    M1 Resonances in Unstable Magic Nuclei

    Full text link
    Within a microscopic approach which takes into account RPA configurations, the single-particle continuum and more complex 1p1h⊗phonon1p1h\otimes phonon configurations isoscalar and isovector M1 excitations for the unstable nuclei 56,78{56,78}Ni and 100,132{100,132}Sn are calculated. For comparison, the experimentally known M1 excitations in 40{40}Ca and 208^{208}Pb have also been calculated. In the latter nuclei good agreement in the centroid energy, the total transition strength and the resonance width is obtained. With the same parameters we predict the magnetic excitations for the unstable nuclei. The strength is sufficiently concentrated to be measurable in radioactive beam experiments. New features are found for the very neutron rich nucleus 78{78}Ni and the neutron deficient nucleus 100{100}Sn.Comment: 17 pages (LATEX), 12 figures (available from the authors), KFA-IKP(TH)-1993-0

    The implications of 18F-FDG PET for the diagnosis of endoprosthetic loosening and infection in hip and knee arthroplasty: Results from a prospective, blinded study

    Get PDF
    BACKGROUND: The most frequent complications of joint arthroplasty are septic or aseptic loosening of endoprostheses. Preoperative differentiation is essential, since very different treatment methods result from the diagnoses. The aim of the current study was to evaluate the clinical value of (18)F-Fluoro-deoxyglucose positron emission tomography ((18)F-FDG PET) as a diagnostic modality for inflammation and loosening in hip and knee joint prostheses. METHODS: (18)F-FDG-PET examinations and multiphase bone scan were performed on hip and knee endoprostheses in 27 patients prior to revision surgical procedures planned for prosthetic loosening. Intact prostheses were found at the opposite site in some patients so that additional 9 joints could be examined with the field of view of (18)F-FDG PET. Verification and valuation of the PET and scintigraphic image findings were conducted by comparing them with information combined from intraoperative findings, histopathology, and microbiological investigations. RESULTS: Evidence of loosening was correctly determined in 76.4% of cases using (18)F-FDG-PET, and in 75% of cases using bone scan. The detection of periprosthetic inflammation using (18)F-FDG-PET had a sensitivity of 100% for septic cases and of 45.5% in cases of increased abrasion and aseptic foreign-body reactions. However, reliable differentiation between abrasion-induced and bacterial-caused inflammation was not possible using (18)F-FDG-PET. CONCLUSION: (18)F-Fluoro-deoxyglucose positron emission tomography ((18)F-FDG-PET) allows reliable prediction of peri-prosthetic septical inflammatory tissue reactions. Because of the high sensitivity of this method, a negative PET result in the setting of a diagnostically unclear situation eliminates the need for revision surgery. In contrast, a positive PET result gives no clear differentiation regarding the cause of inflammation

    Parity of bound dipole states in 208Pb

    Get PDF
    The parities of eleven J=1 levels in 208Pb were determined by nuclear resonance fluorescence scattering of linearly polarized photons. A new 1+ level at Ex=5.846 MeV with Gamma 02 / Gamma =1.2±0.4 eV was found. This level can probably be identified with the theoretically predicted isoscalar 1+ state in 208Pb. All other bound dipole states below 7 MeV with Gamma 02 / Gamma >1.5 eV have negative parity. The 1- assignment to the 4.842-MeV level is of special significance because of previous conflicting results about its parity

    Metabolism of no-carrier-added 2-[18F]fluoro-L-tyrosine in rats

    Get PDF
    Background: Several fluorine-18 labelled fluoroamino acids have been evaluated as tracers for the quantitative assessment of cerebral protein synthesis in vivo by positron emission tomography (PET). Among these, 2-[18F]fluoro-L-tyrosine (2-[18F]Tyr) has been studied in mice at a low specific activity. Its incorporation into proteins is fast and metabolism via other pathways is limited. The present in vivo study was carried out in normal awake rats using no-carrier-added 2-[18F]Tyr. Under normal physiological conditions, we have studied the incorporation into proteins and the metabolism of the tracer in different brain areas. Methods: No-carrier-added 2-[18F]Tyr was administered to awake rats equipped with chronic arterial and venous catheters. The time course of the plasma activity was studied by arterial blood sampling. The biodistribution of the activity in the main organs was studied at the end of the experiment. The distribution of radioactive species in plasma and brain regions was studied by acidic precipitation of the proteins and HPLC analysis of the supernatant. Results: The absolute uptake of radioactivity in brain regions was homogenous. In awake rats, nocarrier-added 2-[18F]Tyr exhibits a fast and almost quantitative incorporation into the proteins fractions of cerebellum and cortex. In striatum, this incorporation into proteins and the unchanged fraction of the tracer detected by HPLC could be lower than in other brain regions. Conclusion: This study confirms the potential of 2-[18F]fluoro-L-tyrosine as a tracer for the assessment of the rate of protein synthesis by positron emission tomography. The observed metabolism suggests a need for a correction for the appearance of metabolites, at least in plasma

    Human biodistribution and radiation dosimetry of novel PET probes targeting the deoxyribonucleoside salvage pathway

    Get PDF
    PurposeDeoxycytidine kinase (dCK) is a rate-limiting enzyme in deoxyribonucleoside salvage, a metabolic pathway involved in the production and maintenance of a balanced pool of deoxyribonucleoside triphosphates (dNTPs) for DNA synthesis. dCK phosphorylates and therefore activates nucleoside analogs such as cytarabine, gemcitabine, decitabine, cladribine, and clofarabine that are used routinely in cancer therapy. Imaging probes that target dCK might allow stratifying patients into likely responders and nonresponders with dCK-dependent prodrugs. Here we present the biodistribution and radiation dosimetry of three fluorinated dCK substrates, (18)F-FAC, L: -(18)F-FAC, and L: -(18)F-FMAC, developed for positron emission tomography (PET) imaging of dCK activity in vivo.MethodsPET studies were performed in nine healthy human volunteers, three for each probe. After a transmission scan, the radiopharmaceutical was injected intravenously and three sequential emission scans acquired from the base of the skull to mid-thigh. Regions of interest encompassing visible organs were drawn on the first PET scan and copied to the subsequent scans. Activity in target organs was determined and absorbed dose estimated with OLINDA/EXM. The standardized uptake value was calculated for various organs at different times.ResultsRenal excretion was common to all three probes. Bone marrow had higher uptake for L: -(18)F-FAC and L: -(18)F-FMAC than (18)F-FAC. Prominent liver uptake was seen in L: -(18)F-FMAC and L: -(18)F-FAC, whereas splenic activity was highest for (18)F-FAC. Muscle uptake was also highest for (18)F-FAC. The critical organ was the bladder wall for all three probes. The effective dose was 0.00524, 0.00755, and 0.00910 mSv/MBq for (18)F-FAC, L: -(18)F-FAC, and L: -(18)F-FMAC, respectively.ConclusionThe biodistribution of (18)F-FAC, L: -(18)F-FAC, and L: -(18)F-FMAC in humans reveals similarities and differences. Differences may be explained by different probe affinities for nucleoside transporters, dCK, and catabolic enzymes such as cytidine deaminase (CDA). Dosimetry demonstrates that all three probes can be used safely to image the deoxyribonucleoside salvage pathway in humans
    • …
    corecore