614 research outputs found

    Does RNA Pass from Mesenchyme to Epithelium During an Embryonic Tissue Interaction?

    Full text link

    Estimating the Global Prevalence of Inadequate Zinc Intake from National Food Balance Sheets: Effects of Methodological Assumptions

    Get PDF
    Background: The prevalence of inadequate zinc intake in a population can be estimated by comparing the zinc content of the food supply with the population’s theoretical requirement for zinc. However, assumptions regarding the nutrient composition of foods, zinc requirements, and zinc absorption may affect prevalence estimates. These analyses were conducted to: (1) evaluate the effect of varying methodological assumptions on country-specific estimates of the prevalence of dietary zinc inadequacy and (2) generate a model considered to provide the best estimates. Methodology and Principal Findings: National food balance data were obtained from the Food and Agriculture Organization of the United Nations. Zinc and phytate contents of these foods were estimated from three nutrient composition databases. Zinc absorption was predicted using a mathematical model (Miller equation). Theoretical mean daily per capita physiological and dietary requirements for zinc were calculated using recommendations from the Food and Nutrition Board of the Institute of Medicine and the International Zinc Nutrition Consultative Group. The estimated global prevalence of inadequate zinc intake varied between 12–66%, depending on which methodological assumptions were applied. However, country-specific rank order of the estimated prevalence of inadequate intake was conserved across all models (r = 0.57–0.99, P<0.01). A “best-estimate” model, comprised of zinc and phytate data from a composite nutrient database and IZiNCG physiological requirements for absorbed zinc, estimated the global prevalence of inadequate zinc intake to be 17.3%. Conclusions and Significance: Given the multiple sources of uncertainty in this method, caution must be taken in the interpretation of the estimated prevalence figures. However, the results of all models indicate that inadequate zinc intake may be fairly common globally. Inferences regarding the relative likelihood of zinc deficiency as a public health problem in different countries can be drawn based on the country-specific rank order of estimated prevalence of inadequate zinc intake

    Eff ect of increased concentrations of atmospheric carbon dioxide on the global threat of zinc defi ciency: a modelling study

    Get PDF
    Background Increasing concentrations of atmospheric carbon dioxide (CO2) lower the content of zinc and other nutrients in important food crops. Zinc defi ciency is currently responsible for large burdens of disease globally, and the populations who are at highest risk of zinc defi ciency also receive most of their dietary zinc from crops. By modelling dietary intake of bioavailable zinc for the populations of 188 countries under both an ambient CO2 and elevated CO2 scenario, we sought to estimate the eff ect of anthropogenic CO2 emissions on the global risk of zinc defi ciency. Methods We estimated per capita per day bioavailable intake of zinc for the populations of 188 countries at ambient CO2 concentrations (375–384 ppm) using food balance sheet data for 2003–07 from the Food and Agriculture Organization. We then used previously published data from free air CO2 enrichment and open-top chamber experiments to model zinc intake at elevated CO2 concentrations (550 ppm, which is the concentration expected by 2050). Estimates developed by the International Zinc Nutrition Consultative Group were used for country-specifi c theoretical mean daily per-capita physiological requirements for zinc. Finally, we used these data on zinc bioavailability and population-weighted estimated average zinc requirements to estimate the risk of inadequate zinc intake among the populations of the diff erent nations under the two scenarios (ambient and elevated CO2). The diff erence between the population at risk at elevated and ambient CO2 concentrations (ie, population at new risk of zinc defi ciency) was our measure of impact. Findings The total number of people estimated to be placed at new risk of zinc defi ciency by 2050 was 138 million (95% CI 120–156). The people likely to be most aff ected live in Africa and South Asia, with nearly 48 million (32–63) residing in India alone. Global maps of increased risk show signifi cant heterogeneity. Interpretation Our results indicate that one heretofore unquantifi ed human health eff ect associated with anthropogenic CO2 emissions will be a signifi cant increase in the human population at risk of zinc defi ciency. Our country-specifi c fi ndings can be used to help guide interventions aimed at reducing this vulnerability
    corecore