344 research outputs found

    Multi-component Force Balance Control Systems Final Report

    Get PDF
    Technique and apparatus for drag, lift, and pitch force measurements in hypersonic wind tunnel

    Structural diversity in the AdoMet radical enzyme superfamily

    Get PDF
    AdoMet radical enzymes are involved in processes such as cofactor biosynthesis, anaerobic metabolism, and natural product biosynthesis. These enzymes utilize the reductive cleavage of S-adenosylmethionine (AdoMet) to afford l-methionine and a transient 5′-deoxyadenosyl radical, which subsequently generates a substrate radical species. By harnessing radical reactivity, the AdoMet radical enzyme superfamily is responsible for an incredible diversity of chemical transformations. Structural analysis reveals that family members adopt a full or partial Triose-phosphate Isomerase Mutase (TIM) barrel protein fold, containing core motifs responsible for binding a catalytic [4Fe–4S] cluster and AdoMet. Here we evaluate over twenty structures of AdoMet radical enzymes and classify them into two categories: ‘traditional’ and ‘ThiC-like’ (named for the structure of 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate synthase (ThiC)). In light of new structural data, we reexamine the ‘traditional’ structural motifs responsible for binding the [4Fe–4S] cluster and AdoMet, and compare and contrast these motifs with the ThiC case. We also review how structural data combine with biochemical, spectroscopic, and computational data to help us understand key features of this enzyme superfamily, such as the energetics, the triggering, and the molecular mechanisms of AdoMet reductive cleavage. This article is part of a Special Issue entitled: Radical SAM Enzymes and Radical Enzymology.Wellcome Trust (London, England) (091162/Z/10/Z)National Science Foundation (U.S.) (NSF Grant MCB-0543833)Howard Hughes Medical Institute (Investigator

    Consistent Anisotropic Repulsions for Simple Molecules

    Full text link
    We extract atom-atom potentials from the effective spherical potentials that suc cessfully model Hugoniot experiments on molecular fluids, e.g., O2O_2 and N2N_2. In the case of O2O_2 the resulting potentials compare very well with the atom-atom potentials used in studies of solid-state propertie s, while for N2N_2 they are considerably softer at short distances. Ground state (T=0K) and room temperatu re calculations performed with the new N−NN-N potential resolve the previous discrepancy between experimental and theoretical results.Comment: RevTeX, 5 figure

    Proteolytic processing of human cytomegalovirus glycoprotein B (gpUL55) is mediatedby the human endoprotease furin

    Get PDF
    AbstractInhibition of endoproteolytic cleavage of glycoprotein B (gB; gpUL55) of human cytomegalovirus was achieved by treatmentof infected fibroblasts with decanoyl peptidyl chloromethyl ketone (decRVKR-CMK), which inhibits the action of cellular subtilisin-like endoproteases with the amino acid recognition motif R × K/R R. Uncleaved gB precusor molecules of 160 kDa that were accumulated were endoglycosidase H resistant, suggesting that correct cellular transport occurred in the presence of the drug. The inhibitor also prevented endoproteolytic gB processing in CV-1 cells infected with a recombinant vaccinia virus-gB construct (VVgB). Evidence for direct involvement of the ubiquitous subtilisin-like endoprotease furin in gB cleavage was obtained from the observation that coinfection of CV-1 cells with WgB and a recombinant vaccinia-human furin construct reestablished endoproteolytic activity which was normally absent late after infection with WgB alone

    Wigner Trajectory Characteristics in Phase Space and Field Theory

    Get PDF
    Exact characteristic trajectories are specified for the time-propagating Wigner phase-space distribution function. They are especially simple---indeed, classical---for the quantized simple harmonic oscillator, which serves as the underpinning of the field theoretic Wigner functional formulation introduced. Scalar field theory is thus reformulated in terms of distributions in field phase space. Applications to duality transformations in field theory are discussed.Comment: 9 pages, LaTex2

    On-demand, in situ, generation of ammonium caroate (peroxymonosulfate) for the dihydroxylation of alkenes to vicinal diols

    Get PDF
    Using the dihydroxylation of alkenes as a benchmark, the reactivities of fresh and aged solutions of (NH4)2S2O8 (electrochemically generated) were compared to commercially-procured peroxydisulfate and Oxone®. The study revealed that peroxymonosulfate (Caro’s acid, PMS) is the active oxidant in such reactions. Using complementary redox colorimetry and in situ IR spectroscopy to monitor the oxidants, the competitive decomposition of peroxydisulfate in an acidic solution into PMS and H2O2 can be quantified for the first time. The new insight enabled the design and implementation of both batch and flow processes to maximise the concentration of active PMS oxidant. The utility of these oxidants for organic synthesis is demonstrated by the dihydroxylation of eight styrenes and seven alkyl alkenes, where the ammonium PMS solutions performed better than Oxone® (counterion effect). Last but not least, a non-chromatographic method for isolating and purifying the water-soluble diol product was developed

    Turing instabilities in a mathematical model for signaling networks

    Full text link
    GTPase molecules are important regulators in cells that continuously run through an activation/deactivation and membrane-attachment/membrane-detachment cycle. Activated GTPase is able to localize in parts of the membranes and to induce cell polarity. As feedback loops contribute to the GTPase cycle and as the coupling between membrane-bound and cytoplasmic processes introduces different diffusion coefficients a Turing mechanism is a natural candidate for this symmetry breaking. We formulate a mathematical model that couples a reaction-diffusion system in the inner volume to a reaction-diffusion system on the membrane via a flux condition and an attachment/detachment law at the membrane. We present a reduction to a simpler non-local reaction-diffusion model and perform a stability analysis and numerical simulations for this reduction. Our model in principle does support Turing instabilities but only if the lateral diffusion of inactivated GTPase is much faster than the diffusion of activated GTPase.Comment: 23 pages, 5 figures; The final publication is available at http://www.springerlink.com http://dx.doi.org/10.1007/s00285-011-0495-

    Vanishing Twist near Focus-Focus Points

    Full text link
    We show that near a focus-focus point in a Liouville integrable Hamiltonian system with two degrees of freedom lines of locally constant rotation number in the image of the energy-momentum map are spirals determined by the eigenvalue of the equilibrium. From this representation of the rotation number we derive that the twist condition for the isoenergetic KAM condition vanishes on a curve in the image of the energy-momentum map that is transversal to the line of constant energy. In contrast to this we also show that the frequency map is non-degenerate for every point in a neighborhood of a focus-focus point.Comment: 13 page

    Discrete exterior calculus (DEC) for the surface Navier-Stokes equation

    Full text link
    We consider a numerical approach for the incompressible surface Navier-Stokes equation. The approach is based on the covariant form and uses discrete exterior calculus (DEC) in space and a semi-implicit discretization in time. The discretization is described in detail and related to finite difference schemes on staggered grids in flat space for which we demonstrate second order convergence. We compare computational results with a vorticity-stream function approach for surfaces with genus 0 and demonstrate the interplay between topology, geometry and flow properties. Our discretization also allows to handle harmonic vector fields, which we demonstrate on a torus.Comment: 21 pages, 9 figure
    • …
    corecore