FINAL REPORT
 on

NASA Grant NGR 47-005-026

GPO PRICE \$

CFSTI PRICES) \qquad

Submitted by Co-Principal Investigators:
Dr. James W. Moore
Dr. Eugene S. McVey
and
Karl C. Henderson

Charlottesville

Report No. EME-4029-103C-66U
August 1966

FINAL REPORT

on
NASA Grant NGR 47-005-026

Submitted by Co-Principal Investigators:
Dr. James W. Moore
Dr. Eugene S. McVey
and
Karl C. Henderson

RESEARCH LABORATORIES FOR THE ENGINEERING SCIENCES SCHOOL OF ENGINEERING AND APPLIED SCIENCE

UNIVERSITY OF VIRGINIA CHARLOTTESVILLE, VIRGINIA

Report No. EME-4029-103C-66U
August 1966
Copy No. 3

A new wind tunnel force measurement technique was necessitated by the introduction of hypersonic wind tunnels and small, heavy test models. A new technique is presented which uses a gas bearing to support the model and a control system which comprises three separate control loops to position the model. The three forces of interest - drag, lift, and pitch - are determined by sensing the servo motor currents and combining in a way to give the desired reading.

The servo loops are composed of sensors, amplifiers, and motors; each of which is described in detail. The theory for the design of the motors is presented.

The compensation of the servo loops is described wherein the open-loop data is obtained with the system running closed-loop.

A readout preparation unit is described which senses the currents and performs the appropriate addition and subtraction.

TABLE OF CONTENTS

CHAPTER PAGE
I INTRODUCTION 1
General 1
System General Description 2
II SYSTEM ANALYSIS 9
Analysis Assuming No Viscous Friction 9
Analysis Including Viscous Friction 16
III MOTOR DESIGN 24
IV COMPONENT DESCRIPTION 38
Sensors 38
Amplifiers 45
Readout 52
V SYSTEM COMPENSATION 55
VI CONCLUSIONS AND RECOMMENDATIONS 64
BIBLIOGRA PHY 70
APPENDIX 72

LIST OF FIGURES

FIGURE
NUMBER
PAGE
1-1 Sohematio of Balance Servos 3
1-2 Sohematic of Wind Tunnel Test Section 7
2-1 Block Diagram of System Neglecting Viscous Friction 12
2-2 Block Diagram Showing Aerodynamic Force as the Input 17
2-3 Simplified Block Diagram with Aerodynamic Force Input 17
2-4 Block Diagram with Viscous Friction Included 19
$2-5$ Simplified Block Diagram with Viscous Friction Included and with Force as Input 19
2-6 Boot Locus of System Disregarding Visoous Friction 21
$2-7$ Root Loous of System Including Viscous Friction 21
3-1 Operation of Servo Motors 27
3-2 Completed Motor 29
3-3 Single Loop Gradient Coil Motor Geometry 31
3-4 Vector Determination of Angle Between Gradient Coil Axes 34
3-5 Servo Motor Force Characteristic 36
4-1 Linear Varlable Differential Transformer 41
4-2 Schaevitz 010MS-L LVDT Performance Data 44
4-3 Current Source Representation of Power Ampliflers 48
$4-4$ Schematic of Servo Ampliflers 49
4-5 Readout Preparation Unit 54
5-1 Method of Obtaining Open Loop Frequency Response Data 56
5-2 Frequenoy Response of Uncompensated Balance System 58
5-3 Bode Diagram of Y-Direction Servo 59
5-4 Schematic of Compensation Network for Y-Direction Servo 61
6-1 Side View of Gas Bearing and Magnet Support Arm Showing Y-Direction Sensors 65
6-2 Side View Showing Gas Bearing, Motors, Magnet Support Arm, and Y-Direction Sensors 66
6-3 Complete Balance System 67
A-1 Geometry for Derivation of Field Die to Single Ciroular Loop 74
A-2 Schematic of Cross-section of Gradient Coll 79

LIST OF SYMBOLS

B magnetic field of gradient coll
$J_{A} \quad g r a d i e n t$ coil current density
K servo amplifier gain constant
K_{b} constant of viscous friction
$K_{f} \quad m o t o r$ force constant
K_{s} sensor constant
K_{V} motor back emf constant
M mass of supported portion of system
M magnetic moment of permanent magnet
Mo magnitude of magnetic moment of permanent magnet
V permanent magnet volume
$\wedge \wedge$
unit vectors in directions of axes of symmetry of gradient coils
∇ angle between magnetic moment and axis of symmetry of gradient coils
permeability of vacuum
radial coordinate
$\hat{\rho} \quad$ unit vector in direction of radial coordinate
ω_{n}
vector differential operator
angle between axes of symmetry of gradient colls

INTRODUCTION

GENERAL
A system is described in this thesis which is used to measure the forces on wind tunnel models. There are many other possible applioations for this technique such as ion engine thrust measurement. Analytical and experimental work through the prototype stage has been completed, and actual wind tunnel operation should take place soon. The prototype is an operational system that can be effectively used in wind tunnels to measure lift, drag, and pitch force magnitudes from 0.005 pound to 0.5 pound in two ranges.

The development (I) of a new measurement technique was necessitated by wind tunnel model changes for hypersonic testing. At hypersonic velocities, wind tunnel models are relatively heavy and small because the models must be made of heat resistant materials and because of size limitations imposed on the tunnels. The ratio of model weight to aerodynamic force is the primary factor which necessitated the development of a new force measurement method. A typical range for the values of the ratio of model weight to aerodynamic force $18100: 1$ to $1: 1$. For 10 engines this ratio may be one or two orders of magnitude more. An accuracy of 1\% or better of full scale is desired.

Obviously, any system that must operate under these conditions should provide for the support of the model weight In such a way that the data does not need to be recovered from a reading that inoludes the model weight. In addition, the friction in the supports of existing systems would be a problem if they were used for this type application. The system that is to be described supports the model so that the steady-state data is independent of the model weight.

SYSTEM GENERAL DESCRIPTION
The balance system is shown schematically from the top in Fig. (1-1). The control loop for one of the y-direction servos and the readout equipment have been omitted for clarity. Briefly, the system operates in the following manner: the aerodynamic force displaces the model in the direction of the force. This displacement 18 sensed by the displacement sensor. The sensor output 18 amplifled by the power ampliflers and applied to the servo motors. These motors drive the displacement toward zero. The motor current, being proportional to the force, is measured and calibration applied for the force reading.

The system may be divided into three main parts accordIng to function:

1. Gas Bearing - The gas bearing serves two purposes. The first is the support of the model weight, and the second is to provide a practically frictionless

Figure 1-1
Schematic of Balance Servos
platform so that small steady-state motions are effected only by aerodynamic forces and the restoring forces of the control system. The analysis, design, and operation of this part of the system has been fully covered elsewhere (2, 3) and will not be considered here.
2. Control System - The control system is the primary subject of concem here. The purpose of the control system is the accurate positioning of the model in the plane of the forces. A complete description will be given later.
3. Readout Equipment - The readout equipment senses the motor currents required to null the control system and processes these measurements to provide readings of the three forces (4,5) of interest-lift, drag, and pitch. This will also be fully described later.

The operation of the balance system can be explained in detail by considering each of the three desired forces separately, keeping in mind that the gas bearing is constrained in the xy-plane only by the servos. If a force is applied
 which produces a voltage that is proportional to displacement. This voltage is applied to the two power amplifiers which are essentially voltage controlled current sources. The current through the gradient colls produces a force on the
permanent magnets which drives the displacement toward zero. Since the motor force is proportional to the current through the gradient coils, the gerodynamic force on the model can be determined by measuring the current through the motors and applying suitable calibration.

The operation of the system when a force is applied in the y-direction is essentially the same as in the x-direction except that there are two separate servos. Each y-direction servo responds to a force in the y-direction, and the force exerted by each is theoretically the same, 1.e. each servo is required to balance half the applied force. The aerodynamic force in this direction is determined by measuring the current in each motor separately, summing, and applying suitable calibration.

The third aerodynamic force that must be measured is pitoh. This is, in reality, a toroue exerted in the $x y-$ plane. If a torque is applied, one $y-d i r e c t i o n ~ s e n s o r ~ w i l l ~$ detect displacement in the positive y-direction while the other will detect a displacement in the negative y-direction. Thus, the y-direotion motors will be exerting forces with opposite senses to accommodate the toraue component. The magnitude of the toraue is determined by measuring the motor currents, subtracting, and applying suitable calibration. The sense of the toroue is obtained by noting the sign of the difference.

It can be seen from this discussion that an easily
measured quantity, current, is used to obtain the desired force readings. Furthermore, the sense of the force is indicated by the polarity of the reading. These two facts make readout instrumentation relatively simple.

It should be stated at this point that the direction of air (or plasma) flow through the tunnel is in the x direction. The gas bearing, motors, and sensors are mounted outside the tunnel in the top. The test model is attached inside the tunnel to the model support arm (sting) which is, in turn, attached to the gas bearing. In order to measure lift and pitch in the chosen $x y-p l a n e$, the model is rotated 90 degrees about the fore and aft axis. In other words, considering a model of a conventional winged aircraft, the wings are vertical rather than horizontal. In this way lift is a force toward one side of the tunnel and pitch is a torque in the xy-plane. With this configuration of model, motors, and sensors, the model weight is in the z-direction. Thus, the objeotive of making the steady-state data independent of the model weight is accomplished. Figure (1-2) is a schematic of the side view showing the gas bearing, model, and model support arm.

To this point the major emphasis has been on making the measurements independent of the model weight, but another factor that makes data reduction difficult is the effect that a force in one direction has on the reading of other forces being measured. This effect is oall cross-coupling, and its

[^0]minimizetion is one of the orimary considerations in the desion of the system. The minimization of cross-coupling will be considered in Chspters III and IV.

SYSTEM ANALYSIS
analysis assuming no viscous friction
The development of the transfer function and block diagram for the system, disregarding viscous friction in the gas bearing, follows that given by Moore and McVey (1). This simplified analysis is presented because it will aid In understanding the design of this type of system. The analysis is also useful for obtaining information about the steady-state conditions of the system.

For the purposes of this development, the servos for lift and dras (y and $x-d i r e c t i o n s$ respectively) will be considered independent of each other. The validity of this assumption has been verified by Mason (4, 5) where it is shown that the interaction of the servos (cross-coupling) is of the order of only 1%. The same analysis will apply theoretically to both directions. Only the x-direction servo wlll be considered.

The force balance equation for the x-direction is

$$
\begin{equation*}
F+F_{m}=\ddot{M x} \tag{2-1}
\end{equation*}
$$

where F is the aerodynamic force on the model (dras in this case), F_{m} is the force exerted by the servo motors, and M is the combined mass of the model, sting, gas bearing, and motor arm (i.e. the mass supported by the gas bearing).

The force exerted by the servo motors is proportional to the current, so

$$
\begin{equation*}
F_{m}=K_{f} 1 \tag{2-2}
\end{equation*}
$$

where K_{f} is the constant of proportionality relating current to force.

Taking the Laplace transform of Eqs. (2-1) and (2-2), assuming zero initial conditions, and combining the results yields

$$
\begin{equation*}
F(s)+K_{f} 1(s)=s^{2} M X(s) \tag{2-3}
\end{equation*}
$$

wheres 18 the Laplace transform variable.
The motor inductance and servo amplifier output impedance will be assumed negligible in this first simplified analysis. This assumption will, of course, have to be verified for the motors and amplifiers that are used. With these assumptions, the relationship between the input voltage to the motor and the motor current is

$$
\begin{equation*}
e_{m}=1 R+K_{v} \dot{x} \tag{2-4}
\end{equation*}
$$

where K_{∇} is the back emf constant of the motor, and $R 1 s$ the resistance of the motor winding. Taking the Laplace transform of Eq. (2-4) (again assuming zero initial conditions), and solving for the motor current yields

$$
\begin{equation*}
I(s)=\frac{e_{m}(s)-s K_{V} x(s)}{R} \tag{2-5}
\end{equation*}
$$

The time constants of the servo amplifier can easily be made much smaller than the time oonstants of the mechanical part of the system so they can be ignored. Therefore the motor input voltage, e_{m}, is the servo error voltage times the gain constant, K, of the servo amplifier.

Assuming zero input voltage (any input voltage would simply be a dc positioning voltage), the servo error signal is the sensor output signal. Thus

$$
\begin{equation*}
e_{m}=K e_{s}(s) \tag{2-6}
\end{equation*}
$$

where the phase reversal is introduced to produce negative feedback.

The final element in the loop is the position sensor. Any one of several types that are commercially avallable can be used if the largest time constant of the sensor chosen is much smaller than the significant time constants of the mechanical part of the system. Because the time constants of the sensor are not considered significant, the relation between sensor output and position is

$$
\begin{equation*}
e_{s}(s)=K_{s} I(s) \tag{2-7}
\end{equation*}
$$

where K_{s} is the sensor constant.
The block diagram of Fig. (2-1) can now be drawn. This is the block diagram for the system in which the viscous friction of the gas bearing has been assumed negligible. As previously stated, the input voltage, e_{1}, is simply a de positioning voltage and does not enter into any of the following oalculations except the calculation of the

Figure 2-1
Block Diagram of System Neglecting Viscous Friction
steady-state position in the absence of a model force.
The open loop transfer function with respect to input position is

$$
\begin{equation*}
\frac{x(s)}{e_{1}}=\frac{K K_{f} / M R}{s\left(s+\frac{K_{f} K_{v}}{M R}\right)} \tag{2-8}
\end{equation*}
$$

Since this transfer function contains an integration, the zero force position corresponds to the positioning voltage because the steady-state error of a type 1 system is zero for a step input.

A relation between motor current and model aerodynamic force can be derived by combining Eqs. (2-3), $(2-6)$, and (2-7). Thus,

$$
\begin{equation*}
i(s)=\frac{K_{v}}{M R} \frac{\left(s+\frac{K K_{s}}{K_{v}}\right)}{s^{2}+\frac{K_{f} X_{v}}{M R} s+\frac{K_{K_{s}} K_{f}}{M R} F(s)} \tag{2-9}
\end{equation*}
$$

Under steady-state conditions an aerodynamic force can be represented by a step function of magnitude F. Using this force and applying the final value theorem to Eq. (2-9) results in

$$
\begin{equation*}
1_{s s}=-\frac{E}{K_{f}} \tag{2-10}
\end{equation*}
$$

where the step of force was considered negative. Recalling Eq. (2-2), we see that

$$
\begin{equation*}
F_{m}=-F \tag{2-11}
\end{equation*}
$$

Thus the model force is equal and opposite to the motor force, and the aerodynamic force is proportional to the steady-state motor current with the motor force constant being the constant of proportionality.

Another very important relation that is essential to the design of the system is the equation relating the steadystate displacement to the system parameters. The steadystate displacement must be known in order to choose the sensors and because the cross-coupling of the forces will be related to displacement.

Figure (2-1) shows that the transfer function relating position and input force is

$$
\begin{equation*}
\frac{X(s)}{F(s)}=\frac{1}{M} \frac{1}{s^{2}+\frac{K_{f} K_{v_{s}}}{M R}+\frac{K_{s} K K_{f}}{M R}} \tag{2-12}
\end{equation*}
$$

Again the force input is assumed to be a step of magnitude F, and applying the final value theorem yields

$$
\begin{equation*}
x_{s s}=\frac{R}{K K_{s} K_{f}} F \tag{2-13}
\end{equation*}
$$

Referring again to Fig. (2-1) we see that the steady-state displacement is inversely proportional to the loop gain constant. Since gain is relatively easy to obtain (within limits imposed by stability considerations), the displacement is under the designer's control.

Preliminary calculations of the steady-state
displacement can be made by assuming values for the system parameters. The approximate closed loop resonant frequency of the system can be obtained from Ea. (2-12) as

$$
\begin{equation*}
\omega_{n}^{2}=\frac{K K_{8} K_{f}}{M R} \tag{2-14}
\end{equation*}
$$

and the loop gain constant is

$$
\begin{equation*}
\operatorname{Gain}=\frac{K K_{s} K_{f}}{R} \tag{2-15}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\operatorname{Gain}=M \omega_{n}^{2} \tag{2-16}
\end{equation*}
$$

By combining Eas. (2-13) and (2-16) the steady-state displacement can be expressed as

$$
\begin{equation*}
x_{s s}=\frac{F}{M \omega_{n}^{2}} \tag{2-17}
\end{equation*}
$$

If the closed loop resonant frequency is 30 Hz and the supported mass is estimated to be 8 pounds (mass) or 0.25 slug, a model force of 0.5 pound produces a displacement of 0.000675 inch or 0.675 mil . Since the maximum model force of interest is 0.5 pound this is the maximum displacement if the assumptions are correct. As the reader is aware, these are just preliminary calculations. A designer may simultaneously control loop gain and bandwidth within practical limits through compensation to meet development specifioations.

In the derivation of the previous block diagram, force was considered an output disturbance while the input was the positioning voltage. Since using the aerodynamic force as the input seems more logical than using the bearing positioning voltage, Fig. (2-1) can be rearranged as shown in Fig. (2-2). This block diagram has the aerodynamic force as the input and displacement as the output. If the positioning voltage is disregarded (assumed to be zero), the block diagram can be reduced to that of Fig. (2-3).

ANALYSIS INCLUDING VISCOUS FRICTION
In the previous analysis any viscous friction due to the gas bearing was considered to be negligible, but a complete analysis for dynamic considerations must consider the possibility of an appreciable amount of viscous friction (data supports the conclusion (2, 3)).

To derive the appropriate relationships, Eq. (2-1) is modified to include the effect of viscous friction which is a function of the time rate of change of position. Thus,

$$
\begin{equation*}
F+F_{m}-K_{b} \dot{x}=\ddot{M} \dot{x} \tag{2-18}
\end{equation*}
$$

Where K_{b} is the coefficient of viscous friction. Taking the Laplace transform and solving for the displacement yields

$$
\begin{equation*}
x(s)=\frac{F(s)+F_{m}(s)}{M s\left(s+\frac{K_{p}}{M}\right)} \tag{2-19}
\end{equation*}
$$

Figure 2-2
Block Diagram Showing Aerodynamic Force as the Input

Figure 2-3
Simplified Block Diagram with Aerodynamic Force Input

Applying Eq. (2-2) yields

$$
\begin{equation*}
x(s)=\frac{F(s)+K_{f} 1(s)}{M s\left(s+\frac{K_{b}}{M}\right)} \tag{2-20}
\end{equation*}
$$

The other elements of the block diagram are not changed, so the block diagram of Fig. (2-4) can be drawn. This block diagram can be altered and reduced as before to the diagram of Fig. (2-5).

Figure (2-5) can be used to obtain the closed loop relation between displacement and force. Thus

$$
\begin{equation*}
\frac{x(s)}{F(s)}=\frac{1}{M} \frac{1}{s^{2}+\frac{1}{h}\left(K_{b}+\frac{K_{V} K_{f}}{R}\right)_{s}+\frac{K K_{s} K_{f}}{M R}} \tag{2-21}
\end{equation*}
$$

The steady-state displacement for this case can be obtained by again assuming a step of magnitude F for the force and applying the final value theorem to obtain

$$
\begin{equation*}
x_{s s}=\frac{R}{K K K_{f}} F \tag{2-22}
\end{equation*}
$$

Thus, the steady-state displacement is independent of the viscous friction, and the result of Eq. $(2-13)$ is obtained. This was to be expected since the viscous friction is proportional to the time rate of change of the displacement which is zero in the steady state.

Although viscous friction does not affect the steadystate operation of the system, it can easily be shown that

Figure 2-4
Block Diagram with Viscous Friction Included

Figure 2-5
Simplified Block Diagram with Viscous Friction Included and with Force as Input
it does affect the transient behavior and stability. The loop gain of the system disregarding viscous friction is
(GH) $\begin{gathered}\text { Without viscous } \\ \text { friction }\end{gathered}=\frac{K_{f} K_{v} s+\frac{K_{K}}{M R}}{s^{2}}$
from Fig. (2-3). The loop gain including viscous friction $1 s$
$(G H)_{\substack{\text { With viscous } \\ \text { friction }}}=\frac{K_{f} K v}{M R} \frac{s+\frac{K_{s}}{K_{V}}}{s\left(s+\frac{K_{b}}{M}\right)}$
from Fig. (2-5). The root-locus representations of Eas. $(2-23)$ and $(2-24)$ are shown in Figs. $(2-6)$ and (2-7) respectively. It can be seen from these diagrams that the analysis including $\nabla 1$ scous friction shows that viscous friction improves the relative stability of the closed-loop system for a given loop gain constant.

Because cross-coupling is a function of displacement, it would be desirable to eliminate the steady-state displacement. With the system described by Eqs. (2-23) or (2-24), this would only be possible with an infinite gain constant. The system can, in theory at least, be modified to eliminate the steady-state displacement by inserting an integration in the feedback loop of Figs. (2-3) or (2-5). If this could be accomolished in the ohysical system, the steady-state displacement would be zero for any force input within the limits of the system. This should be a subject for future research.

Figure 2-6
Root Locus of System Disregarding Viscous Friction

Figure 2-7
Root Locus of System Including Viscous Friction

In all of the previous analysis, resonances in the various mechanical parts of the system have been disregarded. Thus, the loop gain will probably be influenced by factors in the actual model that have not been considered. These factors will be considered in Chapter V where actual data are used for final design.

The analysis presented in this chapter presents a theory for force measurements if the assumptions are valid. The problem areas and components which need detailed consideration to build an actual system are:

1. Motors
A. Cross-coupling between perpendicular forces in the plane and pitch moment
B. Motor force rating of 0.5 pound
C. Drift sensitivity

2. Sensors

A. Resolution
B. Mechanical olearance
C. Production of undesirable forces
D. Time constants
E. Cross-coupling
3. Amplifiers
A. Tlme constants
B. Drift stabilization
4. Mechanical
A. Resonances of string, motor arm, and sensor mountings

All of these topics are considered in the chapters which follow.

CHAPTER III

MOTOR DESIGN

After the original idea for the system had been conceived and the implementation of the idea had begun, it was realized that the single most critical component of the control system was the servo motor. This is true because the amount of cross-coupling between the measurements is primarily determined by the amount of cross-coupling generated by the servo motors and because certain types of motors have "off center forces" (8) which can result in an open loop unstable system. Such a system is undesirable because it would, at best, be conditionally (Nyquist) stable and because these forces enter into system error considerations. If the maximum force were applied in one direction, 0.5 pound, and the minimum force were applied in the other direction, 0.005 pound, a cross-coupling force generated by the servo motors in the first direction of 1% of maximum force would be equal to the applied force in the other direction. This would make data reduction far more difficult than if the cross-coupling were negligible.

In addition to the minimization of cross-coupling, the motors must meet maximum force requirement of 0.5 pound in each of the coordinate directions. Two servo motors were used to provide the necessary force in each direction because
two motors were required to null the torque component, and it was more economical to build four identical motors. Therefore, each servo motor must be capable of providing half the maximum force or 0.25 pound. Each servo motor must be capable of providing this maximum force for the full period of operation without damage or drift due to overheating. A maximum run-time for the system will be on the order of several minutes.

For the reason stated above, it was decided that the system should be made open-loop stable. This meant that a type of motor had to be adopted which would exert no force when no current was applied. In order to accomplish this, using magnetic principles, the flux path of either the field or the amature had to be through air rather than through a magnetic material.

Two types of motors were investigated theoretically before a final choice was made. The first type of motor that was considered was the loudspeaker type of motor (also called shaker type for ∇ ibration). In this type of motor the force is produced by the interaction of the fields of a permanent magnet and an electromagnet. The frame of the eleotromagnet is concentric with the permanent magnet, and the permanent magnet is mechanioally connected to the moveable arm of the balance system. This type of motor has the distinct advantages of being easy and inexpensive to construct, but the theoretical investigation revealed that
the cross-coupling between the perpendicular forces was a first-order effect with respect to displacements in the plane of the measurements (6). Since cross-coupling is very undesirable, this type of motor was not used for the prototype.

Another type of motor that was investigated was a motor derived from work that has been done on magnetic support systems (7, 8). Magnetio support systems have been the subject of extensive research at the University of Virginia. The purpose of the previous work was to support and position a small piece of magnetic material, and apparently, this is the first application of this theory to anything other than a magnetic support system. A brief treatment of some of. the theory governing the operation of this type of motor 18 presented in Appendix A.

In simplest terms the operation of this type of motor may be explained with the aid of Fig. (3-1). In the diagrams of Fig. (3-1) the permanent magnet, which is mounted vertically as shown on the magnet and sensor support amm (see Fig. (1-1)), is in the fields of two electromagnets with their poles oriented as shown. For the only two possible orientations of the poles of the electromagnets (the electromagnets are connected in serles with opposing fields), the directions of the forces are as shown. As shown in Appendix A, the force on the permanent magnet is perpendioular to the magnetio moment when the angle between the moment

Figure 3-1
Operation of Servo Motors
and the axis of symmetry of the gradient coils is $\tan ^{-1} \sqrt{2}$. Furthermore, the force is in the plane formed by the axis of symmetry of the gradient coils and the vertical ine intersecting the axis. Thus, it takes two coils and a permanent magnet to make one motor, but a second motor with its force perpendicular to the first can be made by the addition of two coils with their axis of symmetry perpendicular to the axis of symmetry of the first two. A pioture of a completed motor for the prototype is shown in Fig. (3-2). This shows the orientation of the magnet and colls for the x and y-direction motors of one side of the balance system.

Two sources of cross-coupling forces are present in the coil axis alignment. Jenkins and Parker (7) have shown that a force is renerated parallel to the direction of the moment which is coupled to the desired force to the first order in the error of the angle between the gradient coll axis and the moment. This force component has no effect on the balance system since the moment is vertical (in the $z-$ direction of the system coordinates), and therefore, the force works arainst the gas bearing. The second crosscoupling force is due to misalignment of the motors with respect to the system coordinates. This is a first order effect also and can only be minimized with very careful alignment of the motors.

The motors shown in Fig. (3-2) were not designed with the aid of the design equation that was developed in

Figure 3-2
Completed Motor

Appendix A because experiment showed that this equation was not accurate enough. The motors were designed on the basis of the field due to a single circular loop and measurements that were made on an experimental model.

The experimental model was constructed using a permanent marnet that was available. This magnet was made of Alnico V and was two inches long by $1 / 4$ inch diameter. The gradient coils were wound with 20 turns of $\ddagger 20$ magnet wire with a mean diameter of 2.5 inches and a spacing between coils of 3.25 inches. The force exerted by this motor for various coil currents was determined by supporting the permanent magnet on a pan balance.

In order to obtain an analytical expression that could be easily minimized with respect to the various parameters, Eqs. $(A-22)$ and $(A-24)$ of Appendix A were combined to give:

$$
\begin{equation*}
|F|=2.66 \times 10^{-6} \frac{\mathrm{M}_{0} V \mathrm{VI}^{2} \mathrm{Z}_{0}}{\left(a^{2}+Z_{0}^{2}\right)^{5 / 2}} \tag{3-1}
\end{equation*}
$$

This is the equation for the force on a moment due to two single turn circular loops oriented as shown in Fig. (3-3). When this equation was multiplied by the number of turns and the values of the parameters substituted, it was found that the force was slightly less than two orders of magnitude greater than the force determined by the experiment described above. On the basis of these results it was

Figure 3-3
Single Loop Gradient Coil Motor Geometry
decided that the number of turns of the final design should be 100 times the number indicated by the solution of Eq. (3-1).

By trial and error investigation of Eq. (3-1) and demagnetization and energy produce curves furnished by a manufacturer (9), an optimum magnet size was chosen on the basis of the product of moment and volume. The magnet chosen was made of Alnico V and was 2.25 inches long with a diameter of 0.5 inch.

Once the magnet size had been chosen, the coil spacing from front face to front face could be determined graphically. On the basis of this dimension, a mean coil spacing was chosen for use in the solution of Eq. (3-1). The mean coil spacing that was chosen was 2.75 inches. Since the mean coil spacing is fixed by geometric considerations, Eq. (3-1) can be used to determine the coil radius that will give the maximum force. Taking the partial derivative of Ea. (3-1) with respeot to the radius and setting the result equal to zero gives:

$$
\begin{equation*}
a=\frac{2 Z_{0}}{\sqrt{6}}=1.12 \text { inches } \tag{3-2}
\end{equation*}
$$

This is the mean coil radius that will be used in the design.
The remainder of the motor design consists of finding the shape and dimensions of the colls that will meet the mean spacing and radius specifications that have been determined. After this is completed, the number of turns, size
of wire, and current can be determined and the resulting design can be checked by substitution into Eq. (3-1) and application of the multiplication factor that was experimentally determined.

In order to insure that the coils can be fitted with the correct geometry, it is necessary to determine the angle between the axes of symmetry of the coils so that the coils can be sized and shaped to prevent crowding. This angle can be determined with the ald of Fig. (3-4). The vectors, \hat{v}_{1} and \hat{V}_{2}, are unit vectors in the same directions as the coll axes. They may be expressed as:

$$
\begin{align*}
& \hat{\mathrm{V}}_{1}=\hat{i} \sin 54.7^{\circ}+\hat{\jmath} 0+\hat{k} \cos 54.7^{\circ} \tag{3-3}\\
& \hat{\mathrm{V}}_{2}=\hat{i} 0+\hat{\jmath} \sin 54.7^{\circ}+\hat{k} \cos 54.7^{\circ} \tag{3-4}
\end{align*}
$$

If β is defined as the angle between the two vectors, then

$$
\begin{equation*}
\beta=\cos ^{-1} \frac{\hat{V}_{1} \cdot \hat{V}_{2}}{\left|\hat{V}_{1}\right|\left|\hat{V}_{2}\right|}=70.2^{\circ} \tag{3-5}
\end{equation*}
$$

With this angle and the mean coil spacing, a graphical determination of the size and shape of the coils can be made, keeping in mind the mean coll radius specification. The shape that was chosen is shown in Fig. (3-2), and the dimensions are:

Coil spacing (face to face) - 2.25 inches
Outside coil radius (magnet side face) - 0.75 inch

Figure 3-4
Vector Determination of Angle Between Gradient Coil Axes

Outside coil radius (opposite face) - 1.75 inches
Inside coll radius - 0.5 inch
Coil length - 1.5 inches
The values of the parameters were substituted into Eq. (3-1), and the equation was solved for the NI or ampturn product. When the multiplication factor was included, the result was 3000 amp-turns for a force of 0.25 pound. After consideration of space available on the coil forms, current requirements, wire size, and heating due to $I^{2} B$ loss, it was deolded to use 1000 turns of $\# 20$ enameled copper wire on each motor coil. This fixed the maximum coil ourrent at three amps.

The four motors were constructed to the specifications given by the design. In order to determine the motor constant, data was taken by applying a known force to the shaft attached to the gas bearing and then increasing the current through the gradient colls until the gas bearing moved from 1ts meohanical stop. The results of this experiment were sufficiently accurate to prove the design. The results are shown in Fig. (3-5) in the form of force data. This figure shows that the design was quite accurate despite 1 ts approximate nature because extrapolation of the data indicates that a force of 0.25 pound reguires a coil current of 2.62 amps. Since the resistance of the two series coils was 9.4 ohms, the power required by the motors was found to be of a level that could be delivered by power transistors. Thus, the

Figure 3-5
Servo Motor Force Characteristic
servo amplifiers that are required have a power specification that can be reallzed practically.

The inductance of one of the motors was measured to validate the assumption that the inductance was negligible at the frequencies of interest. The measured inductance was 6.8 mlilihenries . At 30 Hz , the inductive reactance of a motor is 1.3 ohms which can be considered negligible since the system response drops rapidly beyond 30 Hz .

SENSORS
It was shown in Chapter II that the steady-state displacement error for maximum force input was slightly greater than 0.0005 inch for the assumed parameters. Since the steady-state displacement is proportional to the force input, the displacement for minimum force input should be slightly greater than 5 micro-inches. Thus the first requirement for the sensors is a resolution of a few microinches.

The second requirement that the sensors must meet is a olearance speoification. Since the sensors are being used to sense displacements in perpendicular directions, sufficient olearance must be provided so that the sensor perpendicular to the direction of the applied force will not tend to limit the displacement. This establishes the clearance that is needed theoretically, but the practical problem of allgning the system requires that a considerably greater amount of clearance be provided.

The third requirement is a bandwidth of at least ten times the crossover frequency of the mechanical part of the system. This was assumed in Chapter II and is necessary to prevent the sensor from adversely affecting the stability of the system. A related requirement determines the
excitation frequency that may be used by the sensors. This frequency should be many times the crossover frequency of the system in order to prevent the portion of the excitation that remains after filtering from producing motion in the system.

Since there are two degrees of freedom in the system there are two further requirements that the sensors must meet which are less obvious but just as important as the ones already considered. The first of these is concerned with the generation of forces by the sensors in the direction in which displacement is being sensed. Any force of this type which is generated should be much less than the smallest force of interest, 0.005 pound, so that calibration will not be affected. The second concerns generation of forces perpendicular to the direction in which displacement is belng sensed. A rorce of this type leads to a false readout as does a force generated in the direction of sensing, but it could also lead to an instability due to open loop poles in the right half of the complex frequency plane because of the cross-coupling of the servos in the two directions.

The last special requirement that the sensors for this system must meet is the requirement that the sensor constant should be relatively independent of small displacements perpendicular to the sensing direction. A change in gain anywhere in the loop changes the stiffness of the servo.

Furthermore, a hiph gein constant is a rood property, but additional gain can be obtained through amplification.

After consideration of these special reauirements as well as availability, price, rellability, and ease of installation, it was decided that linear variable differential transformers (abbreviated LVDT) would be used for the three displacement sensors.

The LVDT converts mechanical displacement into a voltage that is proportional to the displacement (10). It consists of a macnetic core that is attached to the movable member and a body which contains three separate windings as shown schematically in Fig. (4-1). The primary is energized with an altematino current, and the position of the core determines the amount of coupling to the two secondary windings. The secondary windings are connected in series opposition, so the output is the difference between the voltages induced in the two windings. At the point where the two induced voltapes are eaual there is a null or zero output position. As the core moves from one side through the null position, the phase of the output shifts by 180°. The output to the system is obtained by phase detection, rectification, and filterinc. Thus the output to the system is a direct current, the voltape of which is proportional to the displacement from nuil position and the polarity of which is determined by the side of null position that the core is on.

Figure 4-1
Linear Varia:ble Differential Transformer

LVDT's are commerolally avallable in two types according to construction. The first has a separate transformer and carrier-demodulator assembly, and the second type is wholly contained in one unit. The first type is usually a better (and more expensive) LVDT because space limitations do not require the sacrifice of ripple and drift tolerances. Both types were used in the balance system because two of the self-contained units were available at no cost. The first type was used for sensing the x-direction displacements while the two self-contalned units were used to sense y-direotion displacements.

The specifications of the sensors as provided by the manufacturers (11,12) are listed below:

X-DIRECTION SENSOR
LVDT
Manufacturer - Schaevitz Engineering Company
Model Number - Oloms-L
Linear Range - 0.010 inch each side of null
Sensitivity - $4.6 \mathrm{mv} / 0.001$ inch/volt input at $20,000 \mathrm{~Hz}$ with 0.5 megohm load

Radial Clearance - 0.008 Inch each side of center Linearity - $\pm 0.5 \%$ of maximum linear output
CARRIER-AMPLIFIER-DEMODULATOR UNIT
Manufacturer - Schaevitz Engineering Company
Model Number - CAS-20,000
Carrier Frequency - $20,000 \mathrm{~Hz}$

```
    Frequency Response - D. C. to 250 Hz \pm1 db
    Ripple - 25 mv-rms maximum
    Output Impedance - }1000\mathrm{ ohms maximum
    Gain Stability - 0.5% (after 15 minutes)
    Sensitivity - A. C. amplifler gain adjustable from
    I to 100
    Transducer Exoitation - 1.25 volts-rms, 0.5 va
    Overall Maximum Sensitivity - 575 volts/inch
Y-DIRECTION SENSOR
Manufacturer - G. L. Collins Corporation
Sensitivity - 44 volts/inoh
Badial Clearance (after machining) - 0.010 inch each
                                    side of center
```

Carrier Frequency - $4,000 \mathrm{~Hz}$
The remaining specifications are similar to those
given above.

The last special requirement placed on the sensors for this system, low cross-coupling, was easy to check when one of the units had arrived. The sensor was mounted rigidiy to a frame, and the core was attaohed to a micrometer which was attached to the frame. Then the output as a function of displacement was recorded for the core displaced to one side of the sensor barrel. Then the experiment was repeated with the core displaced to the other side of the barrel. The results of this experiment are plotted in Fig. (4-2). The fact that the null position is not the same for both cases

is not significant because the system output (force reading) is independent of the null position, and, in addition, it may be explained as an error in the experiment. The sensor was attached to the frame by means of a screw which had to be loosened when the core position with respect to the radial direction was changed. When the screw was again tightened, it was not tightened to the same degree resulting in a small displacement in the sensing direction. This figure does show that the gain is independent of radial displacement within the limits of this experiment. The third curve on Fig. (4-2) is data that was taken when the phase control on the carrier-amplifier-demodulator unit was set at some position other than that which gave maximum output. This shows the importance of insuring that this control is properly adjusted.

Information furnished by the manufacturer shows that the LVDT with an excitation of $20,000 \mathrm{~Hz}$ exerts a force in the sensing direction which is less than one milligram (13). Since the smallest force of interest is 0.005 pound or 2.2 grams, the core pull is negligible.

AMPLIFIERS

There are three servo loops in the balance system, but there are actually four motors. As stated before (Chapter I) two of the motors provide the x-direction balance force by working in parallel. Since the four motors had identical characteristics, it seemed more economical to design four identical amplifiers and have the two x-direction amplifiers
driven by the same sensor output. This was more economical in terms of design time, power supply cost, and ease of maintenence.

The first requirement that the ampliflers must meet 18 a freauency response specification. The amplifiers ideally would have a relatively flat response from dc to a frequency at least ten times the crossover frequency of the mechanical part of the system. Making the cutoff frequency of the amplifier so high with respect to the cutoff frequency of the mechanical part of the system minimizes the effect of the amplifier time constants on the stability of the system.

As previously stated, the motors require 2.62 amps to produce 0.25 pound force as required by the system. Since the y-direction motors must produce a force in both the
 capable of providing at least 2.62 amps in both directions through the gradient coils of the motors. The resistance of the gradient coils is 9.4 ohms.

Since dc amplifiers cannot employ capacitor or transformer coupling between stages, one of the most serious design problems for dc amplifiers is the elimination of drift due to changes in bias and operating characteristios of the components. Many schemes have been devised to alleviate this problem, but most of these are limited by practical considerations to relatively low power applications. Since each of the four amplifiers must be able to
provide about 85 watts maximum, it was decided that it was economically impractical to adapt any of the low power configurations.

After consideration of several types of direct-coupled amplifiers, the configuration shown schematically in Fig. (4-3) was chosen. The current source on the right produces three amps (the additional current was added as a design safety factor) regardless of the load or the output of the other current source. The current source on the left is blased to produce three amps with zero input from the sensors. Under this condition there will be no current through the gradient coils, and the force will be zero. As the input voltage becomes positive, the current through the left current source decreases, and the current through the gradient coils is equal to the decrease. The direction of the current will be downward through the coils. If the input voltage becomes negative, the current through the left current source increases, and the current through the gradient coils is equal to the increase; but its direction is now upward through the coils. Thus, this configuration is capable of providing three amps in either direction through the gradient coils.

A sohematic diagram of the servo amplifiers is shown in Fig. (4-4). The portion of the schematic enclosed in dashed lines $1 s$ the constant current generator. It is provided with an entirely separate bias supply in order to

Figure 4-3
Current Source Representation of Power Amplifiers

isolate it from variations in the main supply which feeds all four servo amplifiers. The amount of current provided by this generator is adjustable over a limited range by adjustment of the values of R_{1} and R_{2}. With the values shown, the source produces three amps.

The remainder of the sohematic is the voltage controlled current source. With no voltage at the input, the source is biased to produce three amps. As the input voltage becomes positive, the current provided by this source is decreased; and, as the input voltage becomes negative, the current is increased. Since the sensor output in the $x-d i r e c t i o n ~ f o r ~$ 0.5 mil displacement 1 s 0.288 volts, the gain of this current source was designed so that an input of 0.288 volts would produce a current of six amps. This gain can be changed by adjusting the values of R_{3} and R_{4}.

The design of the servo amplifiers is a straightforward procedure, and, therefore the details will not be presented. One very important consideration, however, is the power dissipation of the four parallel transistors in the constant current source. When there is no input to the amplifier, the voltage drop across these transistors is 35 volts (ignoring the drop across the emitter resistors and sensing resistor). The total current is three amps, so the power dissipation is 105 watts. However, when the other current source is producing six amps, the drop across the constant current souroe power transistors is 70 volts (again ignoring
other drops) while the current is still three amps. The power dissipation is now 210 watts. Since the system should be capable of balancing the maximum force in elther direction for a sustained period of time, an adequate means of heat dissipation must be provided for this power level. W1th no force input to the system, the power dissipation in the power transistors of the two current sources is 210 watts. This is a large standbye consumption, but since run times will be relatively short (several minutes at most) and the system will always have a more than adeauate supply of power available, this amount of dissipation is not excessive.

Four servo amplifiers were constructed using the schematic of Fig. ($4-4$) and mounted on a relay rack as shown in Fig. (6-3). The two power supplies were mounted below the amplifiers and were separated by a switch panel. The switohes on the switch panel were arranged so the positive and negative supply voltages could be separately applied to each of the amplifiers for test or servicing purposes.

The four servo amplifiers were designed to work directly from the sensor output, but it was realized that some means of providing compensation for the system would have to be provided. Since compensation can be usually obtained more inexpensively and reliably using R-C networks, it was decided to insert an operational amplifier between the sensor output and the power amplifier input. The design of the
compensation will be discussed in Chapter V.

READOUT
As stated in Chapter I, the force readout is obtained by measuring the currents through the gradient coils, summing or subtraoting, and applying suitable calibration. This may be done in any one of several ways, but in this particular case the readout was speoified as a voltage proportional to the force being measured. This means that the measurement of the currents and the algebralc operations on these measurements should be performed electronically as a part of the system. It was further specified that a range switoh should be included which would divide the specified total range of 0.005 to 0.5 pound into two ranges of 0.005 to 0.05 pound and 0.05 to 0.5 pound with a maximum readout voltage for each range of approximately one volt.

The ourrent through the coils can be determined by measuring the voltage across the feedback resistor of the power amplifiers ($0.22 \mathrm{ohm}, 10$ watt resistor of Fig. (4-4)). At full output, three amps, the drop across this resistor 18 0.66 volts which is the right order of magnitude for the high force range since the lift and drag readouts are the sum of two equal voltages.

The readout voltage for the drag measurement can be obtalned by summing the voltage drops across the feedback resistors of the two x-direction servo amplifiers. The sum
is most easily obtained with an operational amplifier. The range switching can be accomplished by switching between two values of feedback resistor since the gain of an operational amplifier with feedback is R_{f} / R_{i} where R_{f} is the feedback resistor and R_{1} is the input resistor (14).

The lift measurement readout voltage can be obtained in the same menner by suming the voltage drops across the feedbeck resistors of the two y-direction servo amplifiers.

Pitch measurement is accomplished by taking the difference of the voltage drops across the feedback resistors of the two y-direction servo amplifiers. This difference is taken with an operational amplifier also, and the range switch is provided for in the same manner. Since the pitch readout voltage is the difference between two voltages of opposite sign, it will also be of the right order of magnitude.

The schematic diagram of the readout preparation unit is shown in Fig. ($4-5$). The $4 \mu \mathrm{f}$ capacitors were placed around the feedback path to remove the undesired measurement of building vibrations which was particularly annoying on the low force ranje.

Figure 4-5
Readout Preparation Unit
(Range Switch in 0.05 to 0.5 Position)

CHAPTER V

SYSTEM COMPENSATION

The root locus diagrams that were sketched in Figs. $(2-6)$ and $(2-7)$ show that the system should be stable for any value of gain greater than zero if the assumptions were correct. It was stated in connection with these diagrams, however, that any possible resonances in the mechanical parts of the system had been disregarded and that these factors would probably influence the stability of the system. This was, in fact, the oase because when the uncompensated loop was closed the system oscillated.

The frequency of oscillation along both axes was observed, and a rough, trial and error compensation was effected with a somewhat lower value of gain than the desired value. The system had to be made stable in order to take data for a final compensation since even an extremeiy small force such as a wind current in the room could cause the gas bearing to drift to one of its limits. Once the system was made closed-loop stable, the gas bearing was positioned; and a sinusoidal variable frequency signal could be inserted into the loop. The rough compensation was applied to the forward path of the servo amplifier.

The frequency response data for one y-direction loop was taken as shown in Fig. (5-1). The servo amplifier was not included in the data loop because the frequenoy response

Figure 5-1
Method of Obtaining Open Loop Frequency Response Data
of this component had been altered by the rough compensation, and it was known that the time constants of the amplifier were not significant compared to the time constants of the mechanical part of the system. The gain data that was taken was multiplied by the gain of the servo amplifier and the result plotted as shown in Fig. (5-2).

This sraph shows that there are resonances in the mechanical part of the system that were not considered in arriving ot the transfer function of Chapter II. This was to be expected because of the long aluminum rod that served as a sting and because of the magnet arm and sensor mounts. No attempt was made to consider analytically the effect of these parts of the system because of the difficult shapes Involved and the lack of time imposed by a dellvery date for the prototype.

The straight-line approximation of Fig. (5-2) was drawn with the desired gain of 2000 pounds/inch as shown in Fig. (5-3). This straight-line or asymptote approximation was used to determine the asymptote approximation of the compensated system response also shown in Fig. (5-3). Several different attempts were made with the resulting phase margin for each attempt shown. The effect of the sharp upward break at 15 Hz wos $1 g n o r e d$. It produces a value of phase margin that should be slightly conservative. Because the phase margin values were considered to be conservative, the compensated response with the minimum phase

Figure 5-2
Frequency Response of Uncompensated Balance System

margin, 24°, was chosen to determine the necessary compensation. This choice was based on a compromise between relative stability and component size (particularly capacitors) necessary to produce a pole for the lowest break point, 0.006 Hz .

The asymptotic approximation of the compensated response shows that the following response shaping elements are necessary:

1. A pole at 0.006 Hz
2. A zero at 1.2 Hz
3. A zero at 2.6 Hz

It also shows that an additional gain factor of 46 must be included to achieve the desired steady-state displacement.

All of the compensation, including the additional gain, can be obtained with an operational amplifier and R-C networks. The required compensation transfer function can be obtained with the configuration of Fig. (5-4). In this circuit the gain is Z_{f} / Z_{1}. The transfer function 18

$$
\begin{equation*}
\frac{e_{0}}{e_{2}}=\frac{R_{1} R_{2} C_{3}}{R_{1}+R_{2}} \frac{\left(s+\frac{1}{R_{1} C_{1}}\right)\left(s+\frac{1}{R_{3} C_{3}}\right)}{\left(s+\frac{1}{\left(R_{1}+R_{2}\right) C_{1}}\right)} \tag{5-1}
\end{equation*}
$$

The component values are fixed by the time constants given above and by the D. C. gain, keeping in mind that the capacitors should not be polarized and therefore must have relatively low capacitance values. The designer is free to

Figure 5-4
Schematic of Compensation Network For Y-Direction Servo
establish the impedance level. The de gain is given by:

$$
\begin{equation*}
\frac{E_{0}}{E_{2}}=\frac{R_{2}}{R_{3}} \tag{5-2}
\end{equation*}
$$

Because C_{1} w111 be the largest capacitor and because R_{1} is determined only by the zero that is to be obtained, this R-C combination will be used to produce the zero at the lower frequency, 1.2 Hz . This leaves R_{3} and C_{3} to produce the zero at 2.6 Hz .

As a practical maximum, C_{1} was chosen to be $12 \mu \mathrm{f}$. This determines R_{2} because R_{1} will be very small compared to R_{2}. Since R_{2} is determined, R_{3} is determined by the D. C. gain specification. C_{3} is determined by B_{3} and the frequency of the zero to be obtained, 2.6 Hz . Thus all the component values can be determined. They are:
R_{1} - 10 K ohms
$\mathrm{R}_{2}-2.2 \mathrm{M}$ ohms
$\mathrm{H}_{3}-39 \mathrm{~K}$ ohms
$C_{1}-12 \mu \mathrm{f}$
$C_{3}-1.5 \mu \mathrm{f}$
The circuit of Fig. (5-4) with the component values 1isted above was inserted into the two $y-d i r e c t i o n ~ s e r v o ~$ loops between the sensor and the power amplifier. The two y-direction servos were stable and the response was considerably faster than the required response of several tenths of a second. The balance system exhibited only one overshoot
before settling.
Due to the lack of time to take data properly on the $x-d i r e o t i o n ~ s e r v o ~ l o o p, ~ i t ~ w a s ~ d e c i d e d ~ t h a t ~ t h e ~ s a m e ~ c o m p e n-~$ sation would be tried. The component values would have had to be recalculated for this loop because the uncompensated gain for this loop is higher than the uncompensated y direction loops by a factor of thirteen, but the sensor was provided with an adjustable gain control. Therefore, the gain was lowered by a factor of thirteen by adjusting the gain of the sensor, and the same compensation network was inserted. Because the operational amplifier would have had to drive two power ampliflers, thus exceeding its rating, a current booster amplifier was placed between the operational amplifier and the power amplifier. This compensation also stabilized this loop, and the response was well within specifications; in fact, it was found that the gain could be increased making this servo even stiffer than the y direction servos.

CONCLUSIONS AND RECOMMENDATIONS

The system has been constructed and is ready to be placed in operation. A second slightly modified model is being built by NASA (Langley) which will be used in a tunnel test facility. Three views of the completed prototype are shown in Figs. (6-1), (6-2) and (6-3).

The performance of this balance system has been desoribed by Mason (4, 5). In essence, Mason found that the system measurements were accurate to within $\pm 0.2 \%$ of the full scale value for each range, and that the cross-coupling was less than 1% of the full scale value for each range. Thus it can be concluded that the system in its present state of development is suitable for wind tunnel measurements.

Because the theory that is basic to this type of force measurement has now been investigated, further work should center upon improvement of the system. Based upon the previous work, the most fruitful areas for further research appear to be:

1. The causes and effects of cross-coupling should be investigated in detail. In order to facilitate this, the theory of multiple input control systems should be considered as a possible tool.
2. The feasibility of inserting an integration

Figure 6-1
Side View of Gas Bearing and Magnet Support Arm Showing Y-direction Sensors

Figure 6-2
Side View Showing Gas Bearing, Motors, Magnet Support Arm, and Y-direction Sensors

Figure 6-3
Complete Balance System
electronically or mechanically into the feedback path of the sensors should be considered in order to eliminate the steady-state displacement. This is probably one of the principle causes of cross. coupling.
3. A small amplitude, high frequency limit oycle was observed when the system was operated. Time did not permit the close examination of this limit oyole, but it is belleved to be due to the resolution of the sensors. The ultimate resolution of the sensor depends upon the dimension of the ferromagnetic domains parallel to the axis of the core. The finite size of these domains probably produces a very narrow width deadband region about the null position. This should be investigated even though the limit cycle was not bothersome due to its small amplitude and relatively high frequency.
4. The accuracy of the system is somewhat limited by noise. This nolse has two main sources - system electronics and background vibrations. The nolse due to the electronics of the system is considerably less significant, and more easily corrected, than the background vibrations. The sources of background vibrations are sometimes impossible to control, and therefore, the isolation of the system from this source of noise should be investigated.
5. Because the lack of time did not permit the taking of complete freauency response data on the $x-$ direction loop and one of the y-direction loops, this data should be taken and the compensation accordingly changed.

The topics above are just a few of the many possible areas for further study. One very convenient addition to the system would be a provision for auto-calibration. This would ellminate the necessity for manual data reduction.
(1) Moore, J. W. and E. S. McVey. "A Research Proposal for the Development of Systems and Techniques for Multi-Component Micro-Force Measurements on Wind Tunnel Models", Research Laboratories for the Engineering Sciences, Proposal No. EME-NASA-14064 U (University of Virginia, Chariottesville, September 1964).
(2) Hicks, David A. "Design and Development of a GasSupported Hydrostatic Thrust Bearing". Me S Thesis. Charlottesville, Virginia: University of Virginia, 1965.
(3) Moore, J. W. and E. S. McVey. "Investigation of Systems and Techniques for Multi-Component MicroForce Measurements on Wind Tunnel Models", Research Laboratories for the Engineering Sciences, Semiannual Status Report No. EME-4029-101-65U (University of Virginia, Charlottesville, August 1965).
(4) Mason, William T., III. "Calibration of a MultiComponent Micro-Force Balance System for Wind Tunnel Models". M. S. Thesis. Charlottesville, Virginia: University of Virginia, 1966.
(5) Moore, J. W., E. S. McVey, and W. T. Mason III. "Calibration of a Multi-Component Micro-Foroe Balance System for Wind Tunnel Models", Research Laboratories for the Engineering Sciences, Semiannual Status Report No. EME-4029-103A-66U (University of Virginia, Charlottesville, July 1966).
(6) Russell, Robert E. Unpublished memorandum. Charlottesville, Virsinia: Research Laboratories for the Engineering Sciences, 1966.
(7) Jenkins, A. W. and H. M. Parker. "Electromagnetic Support Arrangement with Three-Dimensional Control. I. Theoretical", Joumal of Applied Physios supplement, Vol. $30, \mathrm{~N}_{0}, 4,2385-2395$, April 1959. New York: The American Institute of Physics.
(8) Smith, Gregory A. "A Semi-Active Magnetic Support System for Gyroscope Application". Me. S. Thesis.

Charlottesville, Virginia: University of Virginia, 1963.
(9) Indiana General Corporation, Magnet Division. "Design and Application of Permanent Magnets", Manual No. 2. Valpariso, Indiana: Indiana General Corporation.
(10) Sohaevitz Engineering. "Notes on Linear Variable Differential Transformers", Bulietin AA-1A. Pennsauken, New Jersey: Schaevitz Engineering, 1955.
(11) Schaevitz Engineering. "Standard Linear Variable Transformersn, Bulletin AA-2A. Pennsauken, New Jersey: Schaevitz Engineering.
(12) G. L. Collins Corporation. Information provided with product. Long Beach, Califormia: G. L. Collins Corporation.
(13) Sohaevitz Engineering. "Corepull Versus Excitation Frequency", Drawing AX-3227. Pennsauken, New Jersey: Sohaevitz Engineering, 1960.
(14) Morrison, Charles F., Jr. Generalized Instrumentation for Research and Teaching. Pulman, washington: Washington State University, 1964.
(15) Stratton, Jullus A. Electromagnetio Theory. New York: McGrar-Hill Book Company, Inc., 1941.
(16) Plonsey, Robert and R. E. Collin. Pringiples and Applications of Electromagnetie Fields. New York: McGraw-Hill Book Company, Inc., 1961.

APPENDIX

DERIVATION OF MOTOR RELATIONS

MOMENT AND GRADIENT COIL CONFIGURATION
As stated in Chapter III, the servo motors that were used in the system were derived from the magnetic support systems. The development given in this appendix follows work by Jenkins and Parker (7) and by Smith (8).

According to Stratton (15) the force on a plece of magnetic material of volume $d V$ located in a magnetic field is given by

$$
\begin{equation*}
\overline{\mathrm{dF}}=\nabla(\overline{\mathrm{dM}} \cdot \overline{\mathrm{~B}}) \tag{A-1}
\end{equation*}
$$

where ∇ is the vector differential operator, d_{N} is the incremental magnetio moment of the material, and \bar{B} is the magnetic field.

Equation ($\mathrm{A}-1$) can be expanded to

$$
\begin{equation*}
\overline{\mathrm{dF}}=(\overline{\mathrm{dM}} \cdot \nabla) \overline{\mathrm{B}}+(\overline{\mathrm{B}} \cdot \nabla) \overline{\mathrm{AM}}+\overline{\mathrm{dMX}}(\nabla \mathrm{X} \overline{\mathrm{~B}}) \tag{A-2}
\end{equation*}
$$

$$
+\overline{B X}(\nabla \bar{X} \overline{d M})
$$

This equation can be simplified if it is assumed that the moment is an ideal moment, i.e. that the moment originated from a dipole source. In this case the second term on the right in Eq. (A-2) vanishes. If the material $1 s$ assumed to
be uniformly magnetized, the last term on the right vanishes since $\nabla \mathrm{X} \overline{\mathrm{dM}}=0$. The third term on the right vanishes since the volume of the magnetic material encloses no current. Thus, Eq. (A-2) reduces to

$$
\begin{equation*}
\overline{\mathrm{dF}}=(\overline{\mathrm{dM}} \cdot \nabla) \overline{\mathrm{B}} \tag{A-3}
\end{equation*}
$$

Because the material has been assumed to be uniformly magnetized, the incremental moment can be expressed as

$$
\begin{equation*}
\overline{\mathrm{dM}}=\overline{\mathrm{M}} \mathrm{dv} \tag{A-4}
\end{equation*}
$$

where \mathbb{M} is the total magnetic moment of the material. Thus, the force equation now becomes

$$
\begin{equation*}
\overline{\mathrm{dF}}=(\overline{\mathrm{M}} \mathrm{VV} \cdot \nabla) \overline{\mathrm{B}} \tag{A-5}
\end{equation*}
$$

If the moment is oriented as shown in Fig. (A-1), the moment can be expressed as

$$
\begin{equation*}
\bar{M}=M_{o}\left(\hat{i}_{\rho} \sin \theta+\hat{i}_{z} \cos \theta\right) \tag{A-6}
\end{equation*}
$$

where M_{0} is the magnitude of the moment. Substitution of this into Eq. (A-5) yields

$$
\begin{align*}
\frac{\overline{\mathrm{dF}}}{\mathrm{dV}}= & M_{0}\left[\hat{i}_{\rho}\left(\sin \theta \frac{\partial B_{\rho}}{\partial \rho}+\cos \theta \frac{\partial B_{z}}{\partial \rho}\right)\right. \tag{A-7}\\
& \left.+\hat{i}_{z}\left(\sin \theta \frac{\partial B_{\rho}}{\partial z}+\cos \theta \frac{\partial B_{z}}{\partial z}\right)\right]
\end{align*}
$$

Figure A-1
Geometry for Derivation of Field Due to Single Circular Loop
since the field, \bar{B}, possesses cylindrical symmetry.
Expand B_{p} in a Taylor series for two variables about the origin of the coordinates to obtain:

$$
\begin{align*}
B_{\rho}(\rho, z)= & B_{\rho}(0,0)+\left.\rho \frac{\partial B_{\rho}}{\partial \rho}\right|_{0}+\left.z \frac{\partial B_{\rho}}{\partial z}\right|_{0} \tag{A-8}\\
& +\frac{1}{2 f}\left(\left.\rho^{2} \frac{\partial^{2} B \rho}{\partial \rho^{2}}\right|_{0}+\left.\rho z \frac{\partial^{2} B_{\rho}}{\partial \rho \partial z}\right|_{0}+z^{2} \frac{\partial^{2} B_{\rho} \rho}{\partial z^{2}!}\right)+\ldots \ldots
\end{align*}
$$

Since the motor has two gradient colls that are in series opposition, the field vanishes at the origin. If $\rho \rightarrow 0$, the field along the z-axis is obtained. Thus,

$$
\begin{equation*}
B_{p}(0, z)=\left.z \frac{\partial B_{\rho}}{\partial z}\right|_{0}+\left.z^{2} \frac{\partial^{2} B_{\rho}}{\partial z^{2}}\right|_{0}+\ldots \cdot \tag{A-9}
\end{equation*}
$$

The p-component of the field vanishes everywhere along the z-axis since it is the axis of symmetry. Therefore,

$$
\begin{equation*}
\left.z \frac{\partial B_{\rho}}{\partial z}\right|_{0}+\left.z^{2} \frac{\partial^{2} B_{\rho}}{\partial z^{2}}\right|_{0}+\ldots=0 \tag{A-10}
\end{equation*}
$$

This can be true everywhere along the axis only if the partial derivatives of all orders vanish. A similar development will show that the partials of B_{z} with respect to ρ also vanlsh. Thus Eq. (A-7) reduces to

$$
\begin{equation*}
\frac{\overline{d F}}{d V}=M_{0}\left(\hat{I}_{\rho} \sin \theta \frac{\partial B_{\rho}}{\partial \rho}+\hat{I}_{z} \cos \theta \frac{\partial B_{z}}{\partial z}\right) \tag{A-11}
\end{equation*}
$$

The total force can be found by integrating Eq. (A-11) over the volume of the permanent magnet, but since the magnet has been replaced by a moment, the total force is

$$
\begin{equation*}
\bar{F}=M_{o} V\left(\hat{i}_{\rho} \sin \theta \frac{\partial B_{\rho}}{\partial \rho}+\hat{i}_{z} \cos \theta \frac{\partial B_{z}}{\partial z}\right) \tag{A-12}
\end{equation*}
$$

Throughout this development it has been assumed that the demagnetizing effect of the gradient field on the permanent magnet was negligible.

Now it is necessary to determine what angle, θ, between the moment and the axis of the gradient coils will produce a force that is orthogonal to the moment.

It $1 s$ known that

$$
\begin{equation*}
\nabla \cdot \bar{B}=0 \tag{A-13}
\end{equation*}
$$

since $\bar{B}=\nabla \times \bar{A}$ where \bar{A} is the magnetic vector potential of the rield, and $\nabla \cdot \nabla X \bar{A}=\nabla \cdot \bar{B}=0$ since the divergence of the ourl of a vector 1 s identically zero.

From Eq. (A-13) in oylindrical coordinates, we obtain

$$
\begin{equation*}
\nabla \cdot \bar{B}=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho B_{\rho}\right)+\frac{\partial B_{z}}{\partial z}=0 \tag{A-14}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{B_{\rho}}{\rho}+\frac{\partial B_{\rho}}{\partial \rho}+\frac{\partial B_{z}}{\partial z}=0 \tag{A-15}
\end{equation*}
$$

In the limit as $\rho+0, \frac{{ }_{\rho}}{\rho} \rightarrow \frac{\partial B_{\rho}}{\partial \rho}$. Therefore

$$
\begin{equation*}
\frac{\partial B_{\rho}}{\partial \rho}=-\frac{1}{2} \frac{\partial B_{z}}{\partial z} \tag{A-16}
\end{equation*}
$$

at the origin.
Substitution of $\mathrm{Eq} .(\mathrm{A}-16)$ into $\mathrm{Eq} \cdot(\mathrm{A}-\mathrm{d})$ gives

$$
\begin{equation*}
\bar{F}=M_{0} V\left(-\hat{i}_{\rho} \frac{\sin \theta}{2} \frac{\partial B_{z}}{\partial z}+\hat{i}_{z} \cos \theta \frac{\partial B_{z}}{\partial z}\right) \tag{A-17}
\end{equation*}
$$

In order for the force and the moment to be orthogonal, the following must hold:

$$
\begin{equation*}
\bar{M} \cdot \bar{F}=0 \tag{A-18}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\bar{M} \cdot \bar{F}=M_{o}^{2} V \frac{\partial B_{z}}{\partial z}\left(-\frac{1}{2} \sin ^{2} \theta+\cos ^{2} \theta\right)=0 \tag{A-19}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\theta=\tan ^{-1} \sqrt{2} \tag{A-20}
\end{equation*}
$$

Therefore, the angle between the axis of the gradient colls and the magnetic moment should be 54.7°.

DESIGN EQUATION
Now that the physical arrangement of the magnet and gradient coils has been determined, it is necessary to try to derive an expression for the force whioh would be useful for design purposes.

Figure (3-2) shows the physical configuration of the
-
motor. The magnet is mounted with the long axis vertical giving a vertical moment. The angle between the moment and the gradient coil axis that gives a force perpendicular to the moment has been determined in Eq. (A-20). With this. angle, the force is in the $x y-p l a n e$ of the coordinate system of the balance as desired.

The magnitude of Eq. (A-17) is:

$$
\begin{equation*}
|\bar{F}|=M_{o} V \frac{\partial B_{z}}{\partial z} \sqrt{\frac{\sin ^{2} \theta}{4}+\cos ^{2} \theta} \tag{A-21}
\end{equation*}
$$

When the value of angle determined by Eq. (A-20) is substituted into $E a .(n-21)$, the magnitude of the force in the xy-plane of the balance system 1s:

$$
\begin{equation*}
|\bar{F}|=0.707 M_{0} V \frac{\partial B_{z}}{\partial z} \tag{B-22}
\end{equation*}
$$

Therefore, in order to obtain an explicit expression for the force, the z-component of the field for the particuLar coil configuration must be determined.

The expression for the field can be obtained by considering the field along the axis due to a single oiroular loop and then integrating the result over the cross-section of the desired gradient coll shape. The geometry is shown in Fif. $(1-1)$. The rield along the axis due to the oircular loop is (16):

$$
\begin{equation*}
B_{z}=\frac{\mu_{0} I}{2} \frac{a^{2}}{\left(a^{2}+z_{0}^{2}\right)^{3 / 2}} \tag{A-23}
\end{equation*}
$$

Figure A-2
Schematic of Cross-section of Gradient Coil

Where a is the radius of the oircular loop, I is the current through the loop, z_{0} is the distance of the loop from the origin, and $\mu_{0} 1 s$ the permeability of free space.

If this equation is doubled (there are two gradient coils for each motor), and the derivative with respect to the axial coordinate is taken, the following expression results:

$$
\begin{equation*}
\frac{\partial B_{z}}{\partial z_{0}}=\frac{3 \mu_{0} I a^{2} z_{0}}{\left.\left(a^{2}+z_{o}^{2}\right)^{5}\right)^{2}} \tag{A-24}
\end{equation*}
$$

where the magnet 18 considered to be midway between the two loops, and the negative sign resulting from the differentiation has been dropped.

The cross-section of a gradient coil is shown in Fig. ($A-3$), and the integration that must be performed is:

$$
\begin{equation*}
\int_{A} \frac{\partial B_{z}}{\partial z} d A=K \int_{A} \frac{a^{2} z}{\left(a^{2}+z^{2}\right)^{5 / 2}} d A \tag{A-25}
\end{equation*}
$$

The substitution,

$$
K=3 \mu_{0} J_{A}
$$

where J_{A} is the current density of the coil, has been made in $E q$. (A-25).

The general equation of the line C in Fig. (A-3) is:

$$
\begin{equation*}
z=m r+b \tag{A-27}
\end{equation*}
$$

where m is the slope and b is the vertical axis intercept. The slope and intercept are given by:

$$
\begin{equation*}
m=\frac{z_{2}-z_{1}}{r_{2}-r_{1}}, \quad b=\frac{z_{1} r_{2}-z_{2} r_{1}}{r_{2}-r_{1}} \tag{A-28}
\end{equation*}
$$

The equation for the force becomes:

$$
\begin{equation*}
|F|=K_{1} \int_{r_{1}}^{r_{2}} r^{2} d r \int_{0}^{z=m r+b} \frac{z d z}{\left(r^{2}+z^{2}\right)^{5 / 2}} \tag{A-29}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{1}=\left(0.707 \mathrm{M}_{0} \mathrm{~V}\right)\left(3 \mu_{0} \mathrm{~J}_{\mathrm{A}}\right) \tag{A-30}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{K}_{1}=2.66 \times 10^{-6} \mathrm{M}_{\mathrm{o}} \mathrm{VJ}_{\mathrm{A}} \tag{A-31}
\end{equation*}
$$

Equation ($\mathrm{A}-29$) oan be evaluated by evaluating the second integral first and then integrating the result by parts. The result of this evaluation is the force generated by one servo motor in the $x y-p l a n e$ of the balance system. Thus,

$$
\begin{align*}
|F|=\frac{K_{1}}{3} & \log \left(\frac{r_{2}}{r_{1}}\right)-\frac{K_{1}}{3}\left\{\frac { 1 } { 4 c b ^ { 2 } - 4 m ^ { 2 } b ^ { 2 } } \left[-\frac{4 m b r^{2}+4 d r}{\left(c r^{2}+2 m b r+b^{2}\right)^{\frac{3}{2}}}\right.\right. \\
& +4 m b\left(\frac{\left(c r^{2}+2 m b r+b^{2}\right)^{\frac{3}{2}}}{c}\right. \tag{A-32}\\
& \left.-\frac{m b}{c^{\frac{3}{2}}} \log \left|2\left(c^{2} r^{2}+2 m b c r+c b^{2}\right)^{\frac{3}{2}}+2 c r+2 m b\right|\right)
\end{align*}
$$

$$
\left.\left.+\frac{4 b^{2}}{c^{\frac{1}{2}}} \log \left\lvert\, 2\left(c^{2} r^{2}+2 m b c r+c b\right)^{\frac{1}{2}}+2 c r+2 m b\right.\right] \mid\right\}_{r_{1}}
$$

where

$$
\begin{equation*}
c=I+m^{2} \tag{A-33}
\end{equation*}
$$

When the values of the parameters were substituted into Eq. (A-32), the resulting force was:"

$$
\begin{equation*}
|F|=4.45 \text { pounds } \tag{A-34}
\end{equation*}
$$

This force is somewhat greater than an order of magnitude in error. Therefore, this design equation should only be used as a very rough check on a design arrived at by the methods of Chapter III or by other, more exact, methods to be developed in the future.

The error in the value given by Ea. ($\mathrm{A}-32$) is probably due to the approximations that were necessary to make the solution tractable to manual methods of computation. This work is presented so that others may use it as a starting point. Obviously, it is of no practical value for motor design in its present form.

FINAL REPORT

on
NASA Grant NGR 47-005-026

Submitted by Co-Principal Investigators:
Dr, James W. Moore
Dr. Eugene S. McVey
and
Karl C. Henderson

Research Laboratories for the Engineering Sciences
University of Virginia
Charlottesville

Report No. EME-4029-103C-66U
August 1966

CHAPTER I

INTRODUCTION

GENERAL

A system is described in this report which is used to measure forces on wind tunnel models. The primary emphasis of the report is on the electronic design and operation of the system because other reports describe the air bearing design (Report No. EME-4029-101-65U issued August 1965) and calibration (Report No. EME-4029-103A-66U issued July 1966). Although the system was developed to make force measurements on wind tunnel models, it is believed that the basic ideas developed can be used on other force measurement problems, e.g., ion engine thrust measurements.

Analytical and experimental work through the prototype stage has been completed, and actual wind tunnel operation should take place soon. The prototype is an operational system that can be effectively used in wind tunnels to measure nominal, axial and pitch force magnitudes from 0.005 pound to 0.5 pound in two ranges.

This work was necessitated by requirements to measure relatively small multi-component forces to an accuracy of 1% or better. Minimization of cross coupling was a design goal. The problem was complicated by the ratio of model weight to aerodynamic force on the model. A typical range for this ratio is $100: 1$ to $1: 1$. These ratios are a result of the necessity to use relatively small heavy models for hypersonic velocity studies. The models are heavy because they must be made of heat resistant materials and the size is affected by the practical need to make hypersonic tunnel dimensions small.

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

An engineering development model has been constructed and will be placed in operation soon. This model was originally built to establish system feasibility and was intended to serve as a guide for the construction of another model for actual tunnel measurements. However, sufficient time is not available to build the second model before tunnel testing starts. Three views of the completed prototype are shown in Figs. (6-1), (6-2) and (6-3).

The performance of this balance system has been described by Mason (4,5). In essence, Mason found that the system measurements were accurate to within $\pm 0.2 \%$ of the full scale value for each range, and that the crosscoupling was less than 1% of the full scale value for each range. Thus, it can be concluded that the system in its present state of development is suitable for wind tunnel measurements.

Because the theory that is basic to this type of force measurement has now been investigated, further work should center upon improvement of the system. Based upon the previous work, the most fruitful areas for further research appear to be:

1. The causes and effects of cross-coupling should be investigated in detail. In order to facilitate this, the theory of multiple input control systems should be considered as a possible tool.
2. The feasibility of inserting an integration.

[^0]:

