17 research outputs found

    Macroautophagy is essential for killing of intracellular Burkholderia pseudomallei in human neutrophils

    No full text
    This version is the author's peer-reviewed final manuscript. The published version is available from the Taylor & Francis web site http://www.tandfonline.com/ or by following the DOI in this record.Neutrophils play a key role in the control of Burkholderia pseudomallei, the pathogen that causes melioidosis. Here, we show that survival of intracellular B. pseudomallei was significantly increased in the presence of 3-methyladenine or lysosomal cathepsin inhibitors. The LC3-flux was increased in B. pseudomallei-infected neutrophils. Concordant with this result, confocal microscopy analyses using anti-LC3 antibodies revealed that B. pseudomallei-containing phagosomes partially overlapped with LC3-positive signal at 3 and 6 h postinfection. Electron microscopic analyses of B. pseudomallei-infected neutrophils at 3 h revealed B. pseudomallei-containing phagosomes that occasionally fused with phagophores or autophagosomes. Following infection with a B. pseudomallei mutant lacking the Burkholderia secretion apparatus Bsa Type III secretion system, neither this characteristic structure nor bacterial escape into the cytosol were observed. These findings indicate that human neutrophils are able to recruit autophagic machinery adjacent to B. pseudomallei-containing phagosomes in a Type III secretion system-dependent manner.National Institutes of Health: NIAID Cooperative Center 8 for Translational Research on Human Immunology and BiodefenseThailand Research Fun

    Proteomic Analysis of Differentially Expressed Proteins in Peripheral Cholangiocarcinoma

    No full text
    Cholangiocarcinoma is an adenocarcinoma of the liver which has increased in incidence over the last thirty years to reach similar levels to other liver cancers. Diagnosis of this disease is usually late and prognosis is poor, therefore it is of great importance to identify novel candidate markers and potential early indicators of this disease as well as molecules that may be potential therapeutic targets. We have used a proteomic approach to identify differentially expressed proteins in peripheral cholangiocarcinoma cases and compared expression with paired non-tumoral liver tissue from the same patients. Two-dimensional fluorescence difference gel electrophoresis after labeling of the proteins with cyanines 3 and 5 was used to identify differentially expressed proteins. Overall, of the approximately 2,400 protein spots visualised in each gel, 172 protein spots showed significant differences in expression level between tumoral and non-tumoral tissue with p < 0.01. Of these, 100 spots corresponding to 138 different proteins were identified by mass spectrometry: 70 proteins were over-expressed whereas 68 proteins were under-expressed in tumoral samples compared to non-tumoral samples. Among the over-expressed proteins, immunohistochemistry studies confirmed an increased expression of 14-3-3 protein in tumoral cells while α-smooth muscle actin and periostin were shown to be overexpressed in the stromal myofibroblasts surrounding tumoral cells. α-Smooth muscle actin is a marker of myofibroblast differentiation and has been found to be a prognostic indicator in colon cancer while periostin may also have a role in cell adhesion, proliferation and migration and has been identified in other cancers. This underlines the role of stromal components in cancer progression and their interest for developing new diagnostic or therapeutic tools

    Mesenchymal Stromal Cells Promote Tumor Growth through the Enhancement of Neovascularization

    No full text
    Mesenchymal stromal cells (MSCs), also called mesenchymal stem cells, migrate and function as stromal cells in tumor tissues. The effects of MSCs on tumor growth are controversial. In this study, we showed that MSCs increase proliferation of tumor cells in vitro and promote tumor growth in vivo. We also further analyzed the mechanisms that underlie these effects. For use in in vitro and in vivo experiments, we established a bone marrow–derived mesenchymal stromal cell line from cells isolated in C57BL/6 mice. Effects of murine MSCs on tumor cell proliferation in vitro were analyzed in a coculture model with B16-LacZ cells. Both coculture with MSCs and treatment with MSC-conditioned media led to enhanced growth of B16-LacZ cells, although the magnitude of growth stimulation in cocultured cells was greater than that of cells treated with conditioned media. Co-injection of B16-LacZ cells and MSCs into syngeneic mice led to increased tumor size compared with injection of B16-LacZ cells alone. Identical experiments using Lewis lung carcinoma (LLC) cells instead of B16-LacZ cells yielded similar results. Consistent with a role for neovascularization in MSC-mediated tumor growth, tumor vessel area was greater in tumors resulting from co-injection of B16-LacZ cells or LLCs with MSCs than in tumors induced by injection of cancer cells alone. Co-injected MSCs directly supported the tumor vasculature by localizing close to vascular walls and by expressing an endothelial marker. Furthermore, secretion of leukemia inhibitory factor, macrophage colony-stimulating factor, macrophage inflammatory protein-2 and vascular endothelial growth factor was increased in cocultures of MSCs and B16-LacZ cells compared with B16-LacZ cells alone. Together, these results indicate that MSCs promote tumor growth both in vitro and in vivo and suggest that tumor promotion in vivo may be attributable in part to enhanced angiogenesis
    corecore