43 research outputs found

    Case Report on Esophageal Coin Management at District Hospital

    Get PDF
    Accidental foreign body ingestion is commonly encountered in the pediatric population, with a peak incidence between the ages of six months and three years. Since the act may go unnoticed, the child may present late. Here, we report a case of an 11 year old boy who present at Lamjung District Hospital after 24 hours of ingestions of two rupee Indian coin. To the best of our knowledge this is the first time we describe a case report on coin removal at district hospital of Nepal.  J-GMC-N | Volume 11 | Issue 01 | January-June 2018, Page: 58-6

    Comparative Toxicity of Nanoparticulate CuO and ZnO to Soil Bacterial Communities

    Get PDF
    The increasing industrial application of metal oxide Engineered Nano-Particles (ENPs) is likely to increase their environmental release to soils. While the potential of metal oxide ENPs as environmental toxicants has been shown, lack of suitable control treatments have compromised the power of many previous assessments. We evaluated the ecotoxicity of ENP (nano) forms of Zn and Cu oxides in two different soils by measuring their ability to inhibit bacterial growth. We could show a direct acute toxicity of nano-CuO acting on soil bacteria while the macroparticulate (bulk) form of CuO was not toxic. In comparison, CuSO4 was more toxic than either oxide form. Unlike Cu, all forms of Zn were toxic to soil bacteria, and the bulk-ZnO was more toxic than the nano-ZnO. The ZnSO4 addition was not consistently more toxic than the oxide forms. Consistently, we found a tight link between the dissolved concentration of metal in solution and the inhibition of bacterial growth. The inconsistent toxicological response between soils could be explained by different resulting concentrations of metals in soil solution. Our findings suggested that the principal mechanism of toxicity was dissolution of metal oxides and sulphates into a metal ion form known to be highly toxic to bacteria, and not a direct effect of nano-sized particles acting on bacteria. We propose that integrated efforts toward directly assessing bioavailable metal concentrations are more valuable than spending resources to reassess ecotoxicology of ENPs separately from general metal toxicity

    The Role of Endothelin-1 and Endothelin Receptor Antagonists in Inflammatory Response and Sepsis

    Get PDF

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Real-time evaluation of signal accuracy in wastewater surveillance of pathogens with high rates of mutation

    No full text
    Abstract Wastewater surveillance of coronavirus disease 2019 (COVID-19) commonly applies reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to quantify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA concentrations in wastewater over time. In most applications worldwide, maximal sensitivity and specificity of RT-qPCR has been achieved, in part, by monitoring two or more genomic loci of SARS-CoV-2. In Ontario, Canada, the provincial Wastewater Surveillance Initiative reports the average copies of the CDC N1 and N2 loci normalized to the fecal biomarker pepper mild mottle virus. In November 2021, the emergence of the Omicron variant of concern, harboring a C28311T mutation within the CDC N1 probe region, challenged the accuracy of the consensus between the RT-qPCR measurements of the N1 and N2 loci of SARS-CoV-2. In this study, we developed and applied a novel real-time dual loci quality assurance and control framework based on the relative difference between the loci measurements to the City of Ottawa dataset to identify a loss of sensitivity of the N1 assay in the period from July 10, 2022 to January 31, 2023. Further analysis via sequencing and allele-specific RT-qPCR revealed a high proportion of mutations C28312T and A28330G during the study period, both in the City of Ottawa and across the province. It is hypothesized that nucleotide mutations in the probe region, especially A28330G, led to inefficient annealing, resulting in reduction in sensitivity and accuracy of the N1 assay. This study highlights the importance of implementing quality assurance and control criteria to continually evaluate, in near real-time, the accuracy of the signal produced in wastewater surveillance applications that rely on detection of pathogens whose genomes undergo high rates of mutation
    corecore