108 research outputs found

    Tuning Heavy Fermion Systems into Quantum Criticality by Magnetic Field

    Full text link
    We discuss a series of thermodynamic, magnetic and electrical transport experiments on the two heavy fermion compounds CeNi2Ge2 and YbRh2Si2 in which magnetic fields, B, are used to tune the systems from a Non-Fermi liquid (NFL) into a field-induced FL state. Upon approaching the quantum-critical points from the FL side by reducing B we analyze the heavy quasiparticle (QP) mass and QP-QP scattering cross sections. For CeNi2Ge2 the observed behavior agrees well with the predictions of the spin-density wave (SDW) scenario for three-dimensional (3D) critical spin-fluctuations. By contrast, the observed singularity in YbRh2Si2 cannot be explained by the itinerant SDW theory for neither 3D nor 2D critical spinfluctuations. Furthermore, we investigate the magnetization M(B) at high magnetic fields. For CeNi2Ge2 a metamagnetic transition is observed at 43 T, whereas for YbRh2Si2 a kink-like anomaly occurs at 10 T in M vs B (applied along the easy basal plane) above which the heavy fermion state is completely suppressed.Comment: 15 pages, 8 figures, submitted to Journal of Low Temperature Physics, special Series on "High Magnetic Field Facilities

    Magnetic-field dependence of antiferromagnetic structure in CeRh1-xCoxIn5

    Full text link
    We investigated effects of magnetic field H on antiferromagnetic (AF) structures in CeRh_{1-x}Co_xIn_5 by performing the elastic neutron scattering measurements. By applying H along the [1,-1,0] direction, the incommensurate AF state with the propagation vector of q_{h1}=(1/2,1/2,0.297) observed at H=0 is replaced by the commensurate AF state with the q_{c2} = (1/2, 1/2, 1/4) modulation above 2 T for x=0.23, while the AF states with the q_{c1}=(1/2,1/2,1/2) and q_{h2}=(1/2,1/2,0.42) modulations seen at H=0 change into a single q_{c1}-AF state above ~1.6 T for x=0.7. These results suggest the different types of AF correlation for Co concentrations of 0.23 and 0.7 in an applied magnetic field H.Comment: 4 pages, 2 figures, to appear in the proceedings of ICM2009 (Karlsruhe, Germany

    Low-temperature specific heat for ferromagnetic and antiferromagnetic orders in CaRu1-xMnxO3

    Full text link
    Low-temperature specific heat of CaRu1-xMnxO3 was measured to clarify the role of d electrons in ferromagnetic and antiferromagnetic orders observed above x=0.2. Specific heat divided by temperature C_p/T is found to roughly follow a T^2 function, and relatively large magnitudes of electronic specific heat coefficient gamma were obtained in wide x range. In particular, gamma is unchanged from the value at x=0 (84 mJ/K^2 mol) in the paramagnetic state for x<=0.1, but linearly reduced with increasing x above x= 0.2. These features of gamma strongly suggest that itinerant d electrons are tightly coupled with the evolution of magnetic orders in small and intermediate Mn concentrations.Comment: 4 pages, 2 figures, to be published in J. Phys.: Conf. Ser. (SCES 2011, Cambridge, UK

    Competition between hidden order and antiferromagnetism in URu_2Si_2 under uniaxial stress studied by neutron scattering

    Get PDF
    We have performed elastic neutron scattering experiments under uniaxial stress sigma applied along the tetragonal [100], [110] and [001] directions for the heavy electron compound URu2Si2. We found that antiferromagnetic (AF) order with large moment is developed with sigma along the [100] and [110] directions. If the order is assumed to be homogeneous, the staggered ordered moment mu_o continuously increases from 0.02 mu_B (sigma=0) to 0.22 mu_B (0.25 GPa). The rate of increase partial mu_o/partial sigma is ~ 1.0 mu_B/GPa, which is four times larger than that for the hydrostatic pressure (partial mu_o/partial P sim 0.25 mu_B/GPa). Above 0.25 GPa, mu_o shows a tendency to saturate, similar to the hydrostatic pressure behavior. For sigma||[001], mu_o shows only a slight increase to 0.028 mu_B (sigma = 0.46 GPa) with a rate of ~ 0.02 mu_B/GPa, indicating that the development of the AF state highly depends on the direction of sigma. We have also found a clear hysteresis loop in the isothermal mu_o(sigma) curve obtained for sigma||[110] under the zero-stress-cooled condition at 1.4 K. This strongly suggests that the sigma-induced AF phase is metastable, and separated from the "hidden order" phase by a first-order phase transition. We discuss these experimental results on the basis of crystalline strain effects and elastic energy calculations, and show that the c/a ratio plays a key role in the competition between these two phases.Comment: 9 pages, 7 figures, to appear in Physical Review

    Pressure-temperature phase diagram of the heavy-electron superconductor URu2Si2

    Full text link
    The pressure-temperature phase diagram of the heavy-electron superconductor URu2Si2 has been reinvestigated by ac-susceptibility and elastic neutron-scattering (NS) measurements performed on a small single-crystalline rod (2 mm in diameter, 6 mm in length) in a Cu-Be clamp-type high-pressure cell (P < 1.1 GPa). At ambient pressure, this sample shows the weakest antiferromagnetic (AF) Bragg reflections reported so far, corresponding to the volume-averaged staggered moment of mord ~ 0.011 mB/U. Under applied pressure, the AF scattering intensity exhibits a sharp increase at P ~ 0.7 GPa at low temperatures. The saturation value of the AF scattering intensity above 0.7 GPa corresponds to mord ~ 0.41 mB/U, which is in good agreement with that (~ 0.39 mB/U) observed above 1.5 GPa in our previous NS measurements. The superconductivity is dramatically suppressed by the evolution of AF phase, indicating that the superconducting state coexists only with the hidden order phase. The presence of parasitic ferro- and/or antiferromagnetic phases with transition temperatures T1star =120(5) K, T2star = 36(3) K and T3star = 16.5(5) K and their relationship to the low-T ordered phases are also discussed.Comment: 6 pages, 7 figures, submitted to J. Magn. Magn. Mater. (ICM2006

    Intrinsic Pinning in the High Field C-Phase of UPt_3

    Full text link
    We report on the a.c. magnetic response of superconducting UPt_3 in a d.c. magnetic field. At low fields (H < H^*), the in-phase susceptibility shows a sharp drop at TcT_c followed by a gradual decrease with decreasing temperature, while the out-of-phase component shows a large peak at T_c followed by an unusual broad peak. As the B-C phase line is crossed (H>H^*), however, both the in-phase and out-of-phase susceptibilities resemble the zero-field Meissner curves. We interpret these results in terms of a vortex pinning force which, while comparatively small in the A/B-phases, becomes large enough to effectively prevent vortex motion in the C-phase.Comment: Modified discussion, slight changes to figures, accepted in PRB Rapid Communications. RevTex file, 5 figure

    Pauli-limited superconductivity and antiferromagnetism in the heavy-fermion compound CeCo(In1-xZnx)5

    Full text link
    We report on the anisotropic properties of Pauli-limited superconductivity (SC) and antiferromagnetism (AFM) in the solid solutions CeCo(In_{1-x}Zn_x)_5 (x<=0.07). In CeCo(In_{1-x}Zn_x)_5, the SC transition temperature T_c is continuously reduced from 2.3 K (x=0) to ~1.4 K (x=0.07) by doping Zn, and then the AFM order with the transition temperature of T_N~2.2 K develops for x larger than ~0.05. The present thermal, transport and magnetic measurements under magnetic field B reveal that the substitution of Zn for In yields little change of low-temperature upper critical field \mu_0H_{c2} for both the tetragonal a and c axes, while it monotonically reduces the SC transition temperature T_c. In particular, the magnitudes of \mu_0H_{c2} at the nominal Zn concentration of x = 0.05 (measured Zn amount of ~0.019) are 11.8 T for B||a and 4.8 T for B||c, which are as large as those of pure compound though T_c is reduced to 80% of that for x=0. We consider that this feature originates from a combination of both an enhanced AFM correlation and a reduced SC condensation energy in these alloys. It is also clarified that the AFM order differently responds to the magnetic field, depending on the field directions. For B||c, the clear anomaly due to the AFM transition is observed up to the AFM critical field of ~5 T in the thermodynamic quantities, whereas it is rapidly damped with increasing B for B||a. We discuss this anisotropic response on the basis of a rich variety of the AFM modulations involved in the Ce115 compounds.Comment: 10 pages, 7 figure

    Pressure dependence of the magnetization of URu2Si2

    Full text link
    The ground state of URu2Si2 changes from so-called hidden order (HO) to large-moment antiferromagnetism (LMAF) upon applying hydrostatic pressure in excess of 14 kbar. We report the dc-magnetization M(B,T,p) of URu2Si2 for magnetic fields B up to 12 T, temperatures T in the range 2 to 100 K, and pressure p up to 17 kbar. Remarkably, characteristic scales such as the coherence temperature T*, the transition temperature T0, and the anisotropy in the magnetization depend only weakly on the applied pressure. However, the discontinuity in dM/dT at T0, which measures the magnetocaloric effect, decreases nearly 50 % upon applying 17 kbar for M and B parallel to the tetragonal c-axis, while it increases 15-fold for the a-axis. Our findings suggest that the HO and LMAF phases have an astonishing degree of similarity in their physical properties, but a key difference is the magnetocaloric effect near T0 in the basal plane
    corecore