697 research outputs found

    Fundraisers in the 21st Century

    Get PDF
    Who are fundraisers today? How and why do individuals become fundraisers? And, what is the situation with fundraisers in the various nonprofit subsectors? Fundraisers in the 21st Century provides fresh insight into fundraisers’ career paths, challenges, successes, and the overall growth of the field. As a comparison to a 1996 study of fundraisers, this study reveals that the profession continues to mature – more people are choosing it as a first career and tenure is up, for example – but challenges remain. The white paper analyzes survey data from 1,826 fundraising professionals

    Designing End-of-life Recyclable Polymers via Diels-Alder Chemistry:A Review on the Kinetics of Reversible Reactions

    Get PDF
    The purpose of this review is to critically assess the kinetic behaviour of the furan/maleimide Diels-Alder click reaction. The popularity of this reaction is evident and still continues to grow, which is likely attributed to its reversibility at temperatures above 100°C, and due to its bio-based "roots" in terms of raw materials. This chemistry has been used to form thermo-reversible crosslinks in polymer networks, and thus allows the polymer field to design strong, but also end-of-life recyclable thermosets and rubbers. In this context, the rate at which the forward reaction (Diels-Alder for crosslinking) and its reverse (retro Diels-Alder for de-crosslinking) proceed as function of temperature is of crucial importance in assessing the feasibility of the design in real-life products. Differences in kinetics based from various studies are not well understood, but are potentially caused by chemical side groups, mass transfer limitations, and on the analysis methods being employed. In this work we attempt to place all the relevant studies in perspective with respect to each other, and thereby offer a general guide on how to assess their recycling kinetics. This review sheds light on the kinetics on the furan/maleimide Diels-Alder reaction. This popular reaction opens up a path to develop end-of-life recyclable polymer networks with self-healing properties. The factors affecting reaction kinetics are discussed, and the importance of accurate reaction kinetics in the context of polymer reprocessing is highlighted. This article is protected by copyright. All rights reserved

    Professional Identity and the Determinants of Fundraisers’ Charitable Behavior

    Get PDF
    This survey-based study (n = 1,663) addressed charitable behaviors of fundraisers—key arbiters of others’ donations. Our research question was as follows: Are fundraisers’ charitable behaviors related to their professional identity? We found several anticipated differences in giving and volunteering behaviors (and their social determinants) in comparison with the general public and the influence of some fundraising-specific variables. Nearly all the fundraisers gave time and money and were more like one another than the public. On average, they gave more money and donated a higher salary share than the typical household. They volunteered at a higher rate and, excluding outliers, more hours than the average American. We contend that fundraiser charitable behavior and professional identity are interwoven. The professional norms regarding personal philanthropy may also be influenced through the self-selection of the inherently philanthropic into fundraising. Future research should examine formation of fundraiser professional identity and its outcomes more broadly

    Entanglement, elasticity and viscous relaxation of actin solutions

    Full text link
    We have investigated the viscosity and the plateau modulus of actin solutions with a magnetically driven rotating disc rheometer. For entangled solutions we observed a scaling of the plateau modulus versus concentration with a power of 7/5. The measured terminal relaxation time increases with a power 3/2 as a function of polymer length. We interpret the entanglement transition and the scaling of the plateau modulus in terms of the tube model for semiflexible polymers.Comment: 5 pages, 4 figures, published versio

    Physical signatures of discontinuities of the time-dependent exchange-correlation potential

    Get PDF
    The exact exchange-correlation (XC) potential in time-dependent density-functional theory (TDDFT) is known to develop steps and discontinuities upon change of the particle number in spatially confined regions or isolated subsystems. We demonstrate that the self-interaction corrected adiabatic local-density approximation for the XC potential has this property, using the example of electron loss of a model quantum well system. We then study the influence of the XC potential discontinuity in a real-time simulation of a dissociation process of an asymmetric double quantum well system, and show that it dramatically affects the population of the resulting isolated single quantum wells. This indicates the importance of a proper account of the discontinuities in TDDFT descriptions of ionization, dissociation or charge transfer processes.Comment: 17 pages, 6 figure

    Mutations of Francisella novicida that Alter the Mechanism of Its Phagocytosis by Murine Macrophages

    Get PDF
    Infection with the bacterial pathogen Francisella tularensis tularensis (F. tularensis) causes tularemia, a serious and debilitating disease. Francisella tularensis novicida strain U112 (abbreviated F. novicida), which is closely related to F. tularensis, is pathogenic for mice but not for man, making it an ideal model system for tularemia. Intracellular pathogens like Francisella inhibit the innate immune response, thereby avoiding immune recognition and death of the infected cell. Because activation of inflammatory pathways may lead to cell death, we reasoned that we could identify bacterial genes involved in inhibiting inflammation by isolating mutants that killed infected cells faster than the wild-type parent. We screened a comprehensive transposon library of F. novicida for mutant strains that increased the rate of cell death following infection in J774 macrophage-like cells, as compared to wild-type F. novicida. Mutations in 28 genes were identified as being hypercytotoxic to both J774 and primary macrophages of which 12 were less virulent in a mouse infection model. Surprisingly, we found that F. novicida with mutations in four genes (lpcC, manB, manC and kdtA) were taken up by and killed macrophages at a much higher rate than the parent strain, even upon treatment with cytochalasin D (cytD), a classic inhibitor of macrophage phagocytosis. At least 10-fold more mutant bacteria were internalized by macrophages as compared to the parent strain if the bacteria were first fixed with formaldehyde, suggesting a surface structure is required for the high phagocytosis rate. However, bacteria were required to be viable for macrophage toxicity. The four mutant strains do not make a complete LPS but instead have an exposed lipid A. Interestingly, other mutations that result in an exposed LPS core were not taken up at increased frequency nor did they kill host cells more than the parent. These results suggest an alternative, more efficient macrophage uptake mechanism for Francisella that requires exposure of a specific bacterial surface structure(s) but results in increased cell death following internalization of live bacteria

    The global field of multi-family offices: An institutionalist perspective

    Get PDF
    We apply the notion of the organisational field to internationally operating multi-family offices. These organisations specialise on the preservation of enterprising and geographically dispersed families’ fortunes. They provide their services across generations and countries. Based on secondary data of Bloomberg’s Top 50 Family Offices, we show that they constitute a global organisational field that comprises two clusters of homogeneity. Clients may decide between two different configurations of activities, depending on their preferences regarding asset management, resource management, family management, and service architecture. The findings also reveal that multi-family offices make relatively similar value propositions all over the world. The distinctiveness of the clusters within the field is not driven by the embeddedness of the multi-family offices in different national environments or their various degrees of international experience. Rather, it is weakly affected by two out of four possible value propositions, namely the exclusiveness and the transparency of services

    Recovering 3D structural properties of galaxies from SDSS-like photometry

    Full text link
    Because of the 3D nature of galaxies, an algorithm for constructing spatial density distribution models of galaxies on the basis of galaxy images has many advantages over surface density distribution approximations. We present a method for deriving spatial structure and overall parameters of galaxies from images and estimate its accuracy and derived parameter degeneracies on a sample of idealised model galaxies. The test galaxies consist of a disc-like component and a spheroidal component with varying proportions and properties. Both components are assumed to be axially symmetric and coplanar. We simulate these test galaxies as if observed in the SDSS project through ugriz filters, thus gaining a set of realistically imperfect images of galaxies with known intrinsic properties. These artificial SDSS galaxies were thereafter remodelled by approximating the surface brightness distribution with a 2D projection of a bulge+disc spatial distribution model and the restored parameters were compared to the initial ones. Down to the r-band limiting magnitude 18, errors of the restored integral luminosities and colour indices remain within 0.05 mag and errors of the luminosities of individual components within 0.2 mag. Accuracy of the restored bulge-to-disc ratios (B/D) is within 40% in most cases, and becomes worse for galaxies with low B/D, but the general balance between bulges and discs is not shifted systematically. Assuming that the intrinsic disc axial ratio is < 0.3, the inclination angles can be estimated with errors < 5deg for most of the galaxies with B/D < 2 and with errors < 15deg up to B/D = 6. Errors of the recovered sizes of the galactic components are below 10% in most cases. In general, models of disc components are more accurate than models of spheroidal components for geometrical reasons.Comment: 15 pages, 13 figures, accepted for publication in RA

    Thermodynamics and structure of self-assembled networks

    Full text link
    We study a generic model of self-assembling chains which can branch and form networks with branching points (junctions) of arbitrary functionality. The physical realizations include physical gels, wormlike micells, dipolar fluids and microemulsions. The model maps the partition function of a solution of branched, self-assembling, mutually avoiding clusters onto that of a Heisenberg magnet in the mathematical limit of zero spin components. The model is solved in the mean field approximation. It is found that despite the absence of any specific interaction between the chains, the entropy of the junctions induces an effective attraction between the monomers, which in the case of three-fold junctions leads to a first order reentrant phase separation between a dilute phase consisting mainly of single chains, and a dense network, or two network phases. Independent of the phase separation, we predict the percolation (connectivity) transition at which an infinite network is formed that partially overlaps with the first-order transition. The percolation transition is a continuous, non thermodynamic transition that describes a change in the topology of the system. Our treatment which predicts both the thermodynamic phase equilibria as well as the spatial correlations in the system allows us to treat both the phase separation and the percolation threshold within the same framework. The density-density correlation correlation has a usual Ornstein-Zernicke form at low monomer densities. At higher densities, a peak emerges in the structure factor, signifying an onset of medium-range order in the system. Implications of the results for different physical systems are discussed.Comment: Submitted to Phys. Rev.

    Gamma Lines without a Continuum: Thermal Models for the Fermi-LAT 130 GeV Gamma Line

    Get PDF
    Recent claims of a line in the Fermi-LAT photon spectrum at 130 GeV are suggestive of dark matter annihilation in the galactic center and other dark matter-dominated regions. If the Fermi feature is indeed due to dark matter annihilation, the best-fit line cross-section, together with the lack of any corresponding excess in continuum photons, poses an interesting puzzle for models of thermal dark matter: the line cross-section is too large to be generated radiatively from open Standard Model annihilation modes, and too small to provide efficient dark matter annihilation in the early universe. We discuss two mechanisms to solve this puzzle and illustrate each with a simple reference model in which the dominant dark matter annihilation channel is photonic final states. The first mechanism we employ is resonant annihilation, which enhances the annihilation cross-section during freezeout and allows for a sufficiently large present-day annihilation cross section. Second, we consider cascade annihilation, with a hierarchy between p-wave and s-wave processes. Both mechanisms require mass near-degeneracies and predict states with masses closely related to the dark matter mass; resonant freezeout in addition requires new charged particles at the TeV scale.Comment: 17 pages, 8 figure
    • …
    corecore