395 research outputs found

    Elastic constants from microscopic strain fluctuations

    Full text link
    Fluctuations of the instantaneous local Lagrangian strain ϵij(r,t)\epsilon_{ij}(\bf{r},t), measured with respect to a static ``reference'' lattice, are used to obtain accurate estimates of the elastic constants of model solids from atomistic computer simulations. The measured strains are systematically coarse- grained by averaging them within subsystems (of size LbL_b) of a system (of total size LL) in the canonical ensemble. Using a simple finite size scaling theory we predict the behaviour of the fluctuations as a function of Lb/LL_b/L and extract elastic constants of the system {\em in the thermodynamic limit} at nonzero temperature. Our method is simple to implement, efficient and general enough to be able to handle a wide class of model systems including those with singular potentials without any essential modification. We illustrate the technique by computing isothermal elastic constants of the ``soft'' and the hard disk triangular solids in two dimensions from molecular dynamics and Monte Carlo simulations. We compare our results with those from earlier simulations and density functional theory.Comment: 24 pages REVTEX, 10 .ps figures, version accepted for publication in Physical Review

    Effective interactions and melting of a one dimensional defect lattice within a two-dimensional confined colloidal solid

    Get PDF
    We report Monte Carlo studies of a two-dimensional soft colloidal crystal confined in a strip geometry by parallel walls. The wall-particle interaction has corrugations along the length of the strip. Compressing the crystal by decreasing the distance between the walls induces a structural transition characterized by the sudden appearance of a one-dimensional array of extended defects each of which span several lattice parameters, a "soliton staircase". We obtain the effective interaction between these defects. A Lindemann criterion shows that the reduction of dimensionality causes a finite periodic chain of these defects to readily melt as the temperature is raised. We discuss possible experimental realizations and speculate on potential applications.Comment: 4 pages 5 embedded figure

    The Observation of Formation and Annihilation of Solitons and Standing Strain Wave Superstructures in a Two-Dimensional Colloidal Crystal

    Get PDF
    Confining a colloidal crystal within a long narrow channel produced by two parallel walls can be used to impose a meso-scale superstructure of a predominantly mechanical elastic character [Chui et al., EPL 2008, 83, 58004]. When the crystal is compressed in the direction perpendicular to the walls, we obtain a structural transition when the number of rows of particles parallel to the walls decreases by one. All the particles of this vanishing row are distributed throughout the crystal. If the confining walls are structured (say with a corrugation along the length of the walls), then these extra particles are distributed neither uniformly nor randomly; rather, defect structures are created along the boundaries resembling "soliton staircases", inducing a non-uniform strain pattern within the crystal. Here we study the conditions of stability, formation and annihilation of these solitons using a coarse grained description of the dynamics. The processes are shown by comparing superimposed configurations as well as molecular animations obtained from our simulations. Also the corresponding normal and shear stresses during the transformation are calculated. A study of these dynamical processes should be useful for controlling strain wave superstructures in the self-assembly of various nano- and meso scaled particles.Comment: 26 pages, 6 figure

    Dynamical transitions of a driven Ising interface

    Get PDF
    We study the structure of an interface in a three-dimensional Ising system created by an external nonuniform field H(r,t). H changes sign over a two-dimensional plane of arbitrary orientation. When the field is pulled with velocity ve, [i.e., H(r,t)=H(r-vt)], the interface undergoes several dynamical transitions. For low velocities it is pinned by the field profile and moves along with it, the distribution of local slopes undergoing a series of commensurate-incommensurate transitions. For large vthe interface depins and grows with Kardar-Parisi-Zhang exponents

    Position dependent photodetector from large area reduced graphene oxide thin films

    Get PDF
    We fabricated large area infrared photodetector devices from thin film of chemically reduced graphene oxide (RGO) sheets and studied their photoresponse as a function of laser position. We found that the photocurrent either increases, decreases or remain almost zero depending upon the position of the laser spot with respect to the electrodes. The position sensitive photoresponse is explained by Schottky barrier modulation at the RGO film-electrode interface. The time response of the photocurrent is dramatically slower than single sheet of graphene possibly due to disorder from the chemically synthesis and interconnecting sheets

    Manifestation of geometric frustration on magnetic and thermodynamic properties of pyrochlores Sm2X2O7Sm_2X_2O_7 (X=Ti, Zr)

    Full text link
    We present here magnetization, specific heat and Raman studies on single-crystalline specimens of the first pyrochlore member Sm2Ti2O7Sm_2Ti_2O_7 of the rare-earth titanate series. Its analogous compound Sm2Zr2O7Sm_2Zr_2O_7 in the rare-earth zirconate series is also investigated in the polycrystalline form. The Sm spins in Sm2Ti2O7Sm_2Ti_2O_7 remain unordered down to at least T = 0.5 K. The absence of magnetic ordering is attributed to very small values of exchange (θcw 0.26K\theta_{cw} ~ -0.26 K) and dipolar interaction (μeff 0.15μB\mu_{eff} ~ 0.15 \mu_B) between the Sm3+Sm^{3+} spins in this pyrochlore. In contrast, the pyrochlore Sm2Zr2O7Sm_2Zr_2O_7 is characterized by a relatively large value of Sm-Sm spin exchange (θcw 10K\theta_{cw} ~ - 10 K); however, long-range ordering of the Sm3+Sm^{3+} spins is not established at least down to T = 0.67 K, due to frustration of the Sm3+Sm^{3+} spins on the pyrochlore lattice. The ground state of Sm3+Sm^{3+} ions in both pyrochlores is a well-isolated Kramer's doublet. The higher-lying crystal field excitations are observed in the low-frequency region of the Raman spectra of the two compounds recorded at T = 10 K. At higher temperatures, the magnetic susceptibility of Sm2Ti2O7Sm_2Ti_2O_7 shows a broad maximum at T = 140 K while that of Sm2Zr2O7Sm_2Zr_2O_7 changes monotonically. Whereas Sm2Ti2O7Sm_2Ti_2O_7 is a promising candidate for investigating spin-fluctuations on a frustrated lattice as indicated by our data, the properties of Sm2Zr2O7Sm_2Zr_2O_7 seem to conform to a conventional scenario where geometrical frustration of the spin exclude their long-range ordering.Comment: 24 pages, 6 figures, Accepted for publication in Phys. Rev.

    Anomalous Raman scattering from phonons and electrons of superconducting FeSe0.82_{0.82}

    Get PDF
    We report interesting anomalies in the temperature dependent Raman spectra of FeSe0.82_{0.82} measured from 3K to 300K in the spectral range from 60 to 1800 cm1^{-1} and determine their origin using complementary first-principles density functional calculations. A phonon mode near 100 cm1^{-1} exhibits a sharp increase by \sim 5% in frequency below a temperature Ts_s (\sim 100 K) attributed to strong spin-phonon coupling and onset of short-range antiferromagnetic order. In addition, two high frequency modes are observed at 1350 cm1^{-1} and 1600 cm1^{-1}, attributed to electronic Raman scattering from (x2y2x^2-y^2)to xzxz / yzyz dd-orbitals of Fe.Comment: 19 pages, 4 figures, 1 tabl
    corecore