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Abstract

Confining a colloidal crystal within a long narralannel produced by two parallel
walls can be used to impose a meso-scale supdtstwf a predominantly
mechanical elastic character [Chui et al., EB08, 83, 58004]. When the crystal is
compressed in the direction perpendicular to thésywae obtain a structural
transition when the number of rows of particlesaial to the walls decreases by one.
All the particles of this vanishing row are distribd throughout the crystal. If the
confining walls are structured (say with a corrugatlong the length of the walls),
then these extra particles are distributed neithéormly nor randomly; rather,
defect structures are created along the boundasesnbling "soliton staircases",
inducing a non-uniform strain pattern within thgstal. Here we study the conditions
of stability, formation and annihilation of thes®i®ns using a coarse grained
description of the dynamics. The processes are sthgveomparing superimposed
configurations as well as molecular animations ioleth from our simulations. Also
the corresponding normal and shear stresses dimengansformation are calculated.
A study of these dynamical processes should beiusefcontrolling strain wave

superstructures in the self-assembly of variou®hnand meso scaled patrticles.



I ntroduction

As is well known, “soliton staircases” are periogiatterns of localized defects that
arise from the lack of commensurability of a (om@&ehsional) crystal with a periodic
potential that it is exposed to. In our previousdgt we have shown that confinement
can be used to impose a controllable mesoscopierstupcture of a predominantly
mechanical elastic character on a cryStddue to an interplay of the particle density
of the system and the widfh of a confining channel, “soliton staircasesdn be
created along both parallel confining boundariésit tgive rise to standing strain
waves in the entire crystal. This new type of mésge is reminiscent of charge
density waveSand spin density wavé crystals, but was demonstrated for a model
of a two-dimensional colloidal crystal, occurringnite on much larger length scales.
Related phenomena could also occur for dusty plsirwtices of spherical block
copolymer micelles under confinem&nsuperstructures of small molecules or atoms
adsorbed on stepped surfagemd superlattices of nano- and meso-scaled |eaftic
A related phenomenon of standing strain waves ieduty a boundary condition
might occur in epitaxially grown thin films withtlece misfit such as Fe films on W
(110), where a periodic structure of misfit dislboas at the Fe-W interface may
cause a modulation that decreases with the disfamethe interface in the thin filtn
The present work also deals with a Monte Carlo (M@yel for a confined colloidal
crystal in two dimensions, for which we investigdte stability, formation and
annihilation of solitons caused by varying the migi the distance between two
corrugated walls. We use a local MC algorithm tadeidhe dynamics of suspended
colloidal particles, executing random Brownian rantidue to collisions with the
small solvent particlé&*2 We have neglected hydrodynamic interactions asinee

notconcerned with the small-scale details (happenmgesy short time scales) of the



mechanism but only the coarse- grained dynamictarge scales where, in the
absence of external fields, it has been showntdtodynamic effects do not alter
the qualitative form of the long time dynantits’

With increasing misfit (i.e. strain) we observedttihe stress increases up to some
critical value, where a transition occurs theduces the number of crystalline rows
parallel to the boundaries by one. At constant particle number, the extra partidés
the row that disappears are distributed in theesystuch that a ““soliton staircades
created along the walls, accompanied by a pattestamding strain waves in the
crystal. Reduction of the misfit in the strainedl@dal crystal will cause the inverse
transition whichincreases the number of crystalline rows by one. We believe the
understanding of non-equilibrium dynamics will hetpgive a better control of the

standing strain wave pattern in two-dimensionasiatg.

Model and simulation protocol

The colloidal particles are described as pointigas interacting with a potenti&\(r)

= ¢(o /1 )'®, wheree sets the energy scalesets the distance scale, andenotes the
interparticle distance. At low enough temperatdréisis system forms a crystal with a
triangular lattice structure, where the lattice gpaetera is related to the chosen
densityp via & = 2/(y3p). Certainly, for such systems with inverse powaw |
potentials,T andp are not independent control parameters, in oug @as only the
combinationp(e / ksT)® that matters® Thus, choosing length units such that
1.05 one finds that the (presumably continuous)tingeltransition of the crystal
occurs akg T/ &~ 1.35%.

Following Ricci et al’, we create a confinement potential commensuratie this

lattice structure by putting two rows of frozen todes at either side of the crystal,



which in our case has,mows containing yiparticles each, so that the crystal in the
case where there is no misfit has the linear dimessly = na and D = gaJ3/2.
These rows of periodically arranged frozen parsicdesate a periodic potential (with
periodicity given by the lattice spacing a) actmg the mobile particles in the strip,
thus stabilizing a crystalline structure with tiperiodicity. However, by choosing a
smaller distance between the frozen rows on baldssof this crystalline strip we can
enforce a misfit, such thab = (n-A)ay3/2. This equation defines the misfit
parameteD.

Here we have used a Monte Carlo (MC) method to gieearse-grained description
of the dynamics of stability, formation and anratibn of solitons. The method used
generated particle positions by the Metropolis Mofttarlo process which moved
each particle at each MC time step with a maximuspldcement of 0.1 lattice
spacing,a. Particles are selected at random for such traves, and acceptance or
rejection of the move is controlled by the standdetropolis transition probability.

In effect, this method is similar to a Brownian Rynics (BD) method but ignoring
hydrodynamic interactions to investigate the broeokrse-grained picture of the

dynamics of the defect structures, the “solitonshat will be characterized below.

Thus, we are concerned with the large-scale featafeéhe stability, formation and
annihilation of the solitons.

Note that while hydrodynamics interactions altdre fjualitative dynamics of the
colloidal particles at times that are short relatito the time for a particle to
equilibrate its position in the “cage” formed byg iteighboring particles, at long time
scales, in the absence of an imposed externafTighk effect of the hydrodynamic
forces can fully be accounted for by a renormaitiraof the effective time scdfe

Hence, mode coupling theory (MCT}* without hydrodynamic forces provides a



guantitatively accurate and highly nontrivial deston of all dynamic correlation
functions of the system, after the “microscopiceistale” is fixed®**

Further, the MC method has been used to describeslttw dynamics of dense
polymer melts where it successfully predicts theus®oto Reptation crossover as
accurately as molecular dynamics and in agreemightexperiments.

In our previous work we determined the variationstfess with strain (misfi)
Higher and higher stress is built up while compresshe system by increasing the
misfit (from A = 0 to A = 2.0) in the colloidal crystals. This is done steps of
A =025 (see Figure 1). We first choose the positionshef wall atoms such that
A =0, with an initial condition of a perfect triangulkattice structure, and equilibrate

the system atk,T/&= 1by standard Monte Carlo methésPeriodic boundary

conditions are used in y direction, and typicallyelr dimensions are chosen such
that we have y#30 rows with 108 particles per rowhen we move the rows with the
wall atoms closer to each other, in order to creataisfit with A= 025 This is
done by generating a starting configuration contpatiwvith this reduced distance
between two walls, by uniform rescaling of all paet distances perpendicular to the
walls using the appropriate factor. After moving tall atoms closer to each other,
we equilibrate the system (typical equilibratiomei were the order of 8 million
Monte Carlo steps per particle), then increasentisfit to A= 05 and re-run the

simulation, and so forth. Recording the stress o, —Uyyzzfrom the computation

of the virial tensof, an almost linear increase of the stress up t@dmum value at
about A =2 is found (filled square in the lower part of figut), where an abrupt
first-order-like transition to a slightly negatiwealue of the stress occurs. Here a
crystal row disappears; a detailed analysis otithe-dependence of the process (see

also the animation in the supplementary materiagests that the mechanism for this



transition happens via the nucleation and subseqgaanihilation of a pair of
dislocations with opposite Burger's vectors perpandr to the walls.

The kinetics of this transition is the phenomendmiciv we wish to describe in the
present paper. Increasing the misfit further upMe 3, the stress increases again
(Fig. 1).

Since we have fouridsee also next section) that the transitionAat 2 where one
row with n, particles disappeared corresponds to the formatican almost periodic
defect structure, we have also created a strietodic structure with,n— 1 rows (i.e.
29 rows in this study). Since it was fodritiat the rows adjacent to the walls (open
circles in the upper part of Fig. 1) do not hosly axtra particles from that
disappeared row, we use a structure wigh-m,/ (n,— 3) particles per row as an
initial condition (open circles in the lower paftkig. 1).

To study the reverse process (soliton annihilatwe)start out atA = 3the system is
equilibrated with this initial condition, and thefA is reduced in steps of 0.25 and re-
equilibrated atA = 15As a result, a transition back fromphto n, rows is obtained
(open triangles in the lower part of Fig.1). Duritigese structural transitions that
occurs after varying the misfit, we observed andorded the kinetics and the
variation of normal stress and shear stress icaleidal crystal.

As a test, we also simulate the system vibtrsmaller than 1.5. Then the stresses
before and after soliton annihilation were alsottgld. With D larger than 1.5, the

soliton annihilation does not occur.

Results on the transition kinetics

As described above, compression of the two-dimeasicrystal strip leads to a

transition R — ny-1 in the number of rows, and thgparticles of this disappearing



row are distrbuted over thg A 3 inner rows of the strip. If there were no efffdue to
the periodic potential of the two confining wakié)e would expect that the strip forms
a crystal with a lattice spacing a’ in y directitrat is reduced in order to
accommodate more particles a’ = a/ [1+1/€18)]. However, a lattice with this
reduced lattice constant is incommensurate wittpr@dic boundary potential
created by the fixed wall particles, which remanhshe original periodicity.

This conflict of periodicities at the walls is ramscent of the problem of a harmonic
crystal in one-dimension exposed to a periodicqcdk if the periodicity of this
crystal coincides with the periodicity of the pdiah all particles will sit in the
potential walls (Fig. 2a). However, if the numbéparticles in the harmonic chains
exceeds the number of potential wells slightly,¢hestal contains defects, so-called
“solitons” where a few particles are forced to beasitions different from the
potential minima (Fig.2b). The minimum energy cgafiation is then a periodic
arrangement of these defects, the so-called “soitaircase”. In between the
solitons the particles stay eventually in the poétmvells.

Of course, the choice of which the particles sitd¢ap of a potential well (full dot in
Fig. 2b) is arbitrary, and due to this degeneraeydefect structure shown in Fig.2b
can be translated along the y axis (without eneagy when the soliton lattice moves
as a whole, with little energy cost when an indiMbsoliton moves, as long as the
distance to the neighboring soliton is large). Wl the mechanical problem of
Fig.2a, b the motion of solitons has the charamftéravelling waves, in a colloidal
system due to friction of colloidal particles cadigy the solvent fluid only a
diffusive motion of solitons is expected.

When we now consider superimposed configuratiorieeparticles (Fig. 2c¢), we see

that particles staying in potential wells show spreegular black dots (the “size” of



these dots gives a measure of the typical meanedgisplacement of the particles).
Particles in solitons, however, show up as darkesrsmeared out a distance of the
overall lattice spacing in y-direction, due to thteral diffusion of these defects (Fig.
2c). However, we can also see that these defextsodidocalized in single row, but
are extended over several adjacent rows. Far awaythe walls where the periodic
potential is created, however, all the particlesagain localized to lattice positions
(but now the lattice spacing in y-direction inddes a smaller value d < a).

In the following, we shall explain how these defgtrtictures are formed during the
transition R — ny-1, as well as how these defect structures disagmzan for the

reverse processyil — ny.

(1) Non-equilibrium dynamicsin two-dimensional colloidal crystal

We observe the kinetics in the two-dimensionaladél crystal from superimposed
configurations of the particle positions. Figurst®ws the animation corresponding
to the formation of solitons with a misfit witk= 2.0 and the sliding transitions which
were observed between two structured walls. Eactungi shows a superposition of
100 individual configurations, which were taken gv&00 MC steps. In Figure 3a, a
sliding centre (which is the two-dimensional anatd@ gliding plane for dislocation
motion in three dimensions) moves downward progregsfrom the soliton on the
top of the system (indicated by solid arrow) to bodétom, and then a new soliton is
formed beside the wall, which is shown in Figure, 3dicated by an ellipse
encircling the defect. Also in Figure 3b, the siglicentre moves upward to the top
arrow and the other soliton is formed. Figure 3d 8&d show that more and more
solitons are formed during the zigzag motion of ghding centre in the structural

transition. These phenomena are analogous to twangghenomena in three-



dimensional crystals during plastic deformafion

From the animation in Figure 4, we observe thecttimal transformation back from
nk-1 to i, rows during the annihilation of soliton&.similar sliding transition is also
found but the sliding centre moves away from theildlated soliton to the opposite
soliton beside the opposite wall of the system f@gdb and 4c). After the zigzag
motion, solitons are deformed and then annihilatetie colloidal crystal, and finally
the whole structural transformation is completed #re number of rows of colloidal
particles is increased by one.

From these observations one can conclude that aleeempeting local structures
representing local minima in the free energy lapgscare available to the confined
solid during the layer transformation. These strced, being more or less degenerate
in energy are visited by the system over long tsoales. At shorter time scales, on
the other hand, the system prefers to stay witly @ne of these local minima.
Similar phenomena have been observed in hard digicles confined within smooth

walls’® ?*and appear to be generic for such systems.

(i1) Stress and shear stressduring structural transformation

Other than the observable dynamics, how the sysémmonds mechanically to the
structural transformation is also interesting. Tkues calculate the normal stress and
shear stress of the system according to the fltiotuéormalism proposed by Farago

and Kantof:
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Summation over all distinct pairs of atomsa<8> is performed. R’ is the

interparticle distance of the pair under consideratand R'° denotes theith
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Cartesian component of the vectR®™ = R*. R® The symbol< > denotes a

thermal average. The ter—NkT&;/v is the kinetic contribution to the stress, which
originates in the additive term —NKT Win the free energy. Here, we calculated the
average normal stress= (oxx +oyy) and the shear stresg.

The variations of normal stress during soliton fation and soliton annihilation are
shown in Figure 5a and 5c respectively. The norstralsss decreases as more and
more solitons are formed, and vice versa. Alsg itlear that the normal stress in the
colloidal crystal changes sharply once soliton(s¢ @#rmed and annihilated.
Interestingly, we find that the extent of the chamgf the normal stress value is
roughly inversely proportional to the change of mluenber of solitons.

In the structural transformation that leads to tealiformation, we identify the
precursory sliding transition before the starttod transformation. The sliding centre
appeared and disappeared from time to time urdifitist soliton was formed. In the
plot of the normal stress variation, we also fimeé tsudden stress change which
corresponds to the existence of the sliding ceintridne colloidal crystal. The stress
value goes down to a lower level for a small perddVIC time, and then rapidly
returns to the original level of the stress.

We also record the shear streggof these two transformations, which is shown in
Figure 6a and 6b. It is obvious that the fluctuadicof the shear stress in the
unstrained crystal, relative to that in the strdigeystal have a very small amplitude.
For the precursory sliding transition, the suddegé changes of the shear stress are
also found before the continuous fluctuations dwehe occurrence of the soliton
formation.

A more guantitative account of the transition kiceis given in Figure 5a and b for

the transition from the crystal without solitonsthe crystal with standing strain wave
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pattern, and in Figure 5¢ and d for the reversesttian. These figures illustrate how
we can obtain a probability distributioR(o) that a stresso occurs during the

transformation. The very high peaks &(o aj the low end and at the high end of
the distribution represent the initial and finalatst respectively, while the 6
intermediate peaks (labelled as 1,2, ...,6 in Figbiog¢ represent the intermediate
plateaus, in Figure 5a; these plateaus are melastaiermediate states, and are
characterized by much larger fluctuations than btitb initial and final state,

respectively. The gaps G1, G2, ..., G6 in betweemtaks of the stress distribution
P(o) represent the relatively fast transitions from onetastable state to the next

one. Of course, also these “relatively fast” trdass are still rather slow processes,
on the time scale (Monte Carlo step per partidie)ttme needed for these transitions
is in between 12500 MCS (Gapl) and 48000 MCS (Gapbg “lifetime” of the
intermediate metastable plateaus in Figure 5allisistinctly larger, e.g. for plateau 1

it is about 760 000 MCS! Figure 5c and d show simghenomena for the reverse
process. The estimated lifetimes of these interatednetastable states, as well as the
time that the transitions between them take, atleated in Tables 1 and 2 for the
soliton formation and the soliton annihilation, pestively. Since all these times are
so large, our statement that we deal with very slod thermally activated dynamics,
and hence a Monte Carlo modelling of the stochasdigsitions that occur in such a

system is adequate, is in fact fully corroboratedbr data.

Conclusion

We have used the Monte Carlo method to simulateldhg time non-equilibrium
dynamics of a confined model two-dimensional colébicrystal. A coarse-grained

description of the dynamics of these straineddatsystems is given by use of a
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combination of superimposed configurations andogeavior of the normal and shear
stresses. By this method we have shown that théitomms under whichthe structural
transformations occur may be readily identified these means and that an
understanding of these novel dynamical propertiesulsl be important to the
experimental control of the structure of confinedlaidal crystals, self-assembly of
nano- and meso- scaled particles, mono-layersempst surfaces, etc.

In order to be able to extend our study to reladgstems described by different
dynamics, such as adsorbed atoms on stepped csysfates, Molecular Dynamics
(MD) simulations are currently being performed atetailed analysis are being
carried out, in order to ascertain the influencehef dynamics on the progress of the
layer transitions in strained two-dimensional caystwith confinement. These MD

result will be presented elsewhere.
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Figure Captions

Figure 1 Internal stresso =0, —o,, (in LJ units) in the confined crystalline strip
plotted vs. A, for the case of a system started with= , 3@, =108 (filled
symbols) and a system started with = ;28 =108 (open symbols) plus the

appropriate extra particles per row, as descrihdtie text. Open circles represent the
stress of the system before the soliton annihilgtand Open triangles represent the
stress of the system after the soliton annihilatidith D larger than 1.5, the soliton
annihilation does not occur. Curves are guideblécete only.

The upper insert shows a schematic sketch of cumgey: we study a system of size

D in the x-direction and L, in the y-direction, apply a periodic boundary

condition along they —axis, while the boundary in the —direction is created by

two rows of fixed particles (shaded) on the ideasipons of a perfect triangular

lattice with lattice spacinga at each side. In the fully commensurate case,
D= nxa\/§/2. The open circles represent the first row of nepirticles adjacent to

each wall.

Figure 2 The origin of soliton lattice in two-dimensionallloadal crystal: (a) In
perfect crystal, all the particles are locatechatliottom of the potential energy wells
and the system is fully commensurate. (b) The degdetween structured walls is
reduced. The number of particle row is reducedr®;, and the particles from the
missing row compete for the space with the pagigiehe remaining rows. Some of
the particles should move out of the bottom of ptét energy wells, and one of them
(black) is even located at the top of the potermtigrgy barrier. The system becomes

incommensurate. (c) The zoom-in superimposed cordtgpns show two solitons
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near to the structured wall. The back square dgisesent static wall particles.

Figure 3 Superimposed configurations with a misfit’of 2.0. The numbers indicate
Monte Carlo (MC) steps after the start of the satioh run. Each snapshot consists
of 100 individual configurations, and each confajion is generated every 100 MC
moves. The top and bottom two rows of static piagiare the structured walls which
provide the confinement. The arrows indicate tmeation of the motion of the

sliding centre which leads to the formation of Aten. The ellipses indicate the
newly formed soliton after the sliding transitionthe two-dimensional colloidal
system. The movie (see the supplementary informpisogenerated from consecutive

superimposed configurations from this Monte Caulo. r

Figure 4 Superimposed configurations with a misfit’of 1.5. The Monte Carlo

(MC) simulation started with a system started with=29; n, =108 plus the

appropriate extra particles per row. The numbetiate the number of MC steps
after the start of the simulation run. After a vehprt MC run, the extra particles lead
to the formation of solitons and a strain wavedtrte. The solitons are however not
stable because the mishitis too small to stabilize the strained systema#Assult the
annihilation of the solitons occurs. The arrows altiggses indicate the sliding
direction and location of annihilated solitons. €Tiholecular movie can be found as

supplementary information)

Figure5 (a) Time evolution of the stresg during the transition from the crystal
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without solitons to the crystal exhibiting solitetair cases causing the standing strain
wave pattern, showing the assignment of 6 platé#8,4,5,6 and gaps G6 (between
plateaus 6 and 5), G5 (between plateau 5 and 4 (l}shows the resulting stress

distribution, P(o), where plateaus show up as peaks, and the mimnilnetween
(gaps G1, G2,--) represent the transitions between these metagbédieaus. Note
that the area of the peaks iA(o cpan be taken as a measure of the lifetime of the

state which the peak belongs to. (c¢) and (d) sl@icase of reverse transition.

Figure 6 (a) The variation of shear stress during the solitmation and (b) the

variation of shear stress during the soliton aratiion.

Table Captions

Tablel: Label of peak (upper part) or gap (lower part)tfa forward transition,

shown in left column; associated area®fo , middle column; estimated lifetimes

of the metastable states (right column, upper panassage times to move from one

plateau to the next (right column, lower part)

Tablell: Same as Table |, but for the reverse transition.
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Peak Area Estimated MC steps
(Number obtained from
SressvsMCS)
1 0.06349 761500 (~763800)
2 0.01712 205300 (~202100)
3 0.0393 471300 (~478400)
4 0.00763 91400 (~87400)
5 0.03361 403200 (~402600)
6* 0.02607 312700 (~316100)
Gap Area Estimated M C steps
1 0.00104 12500
2 0.00154 18500
3 0.00235 28300
4 0.00222 26600
5 0.004 48000
6 0.00201 24100
Table 1
Peak Area Estimated MC steps
(Number obtained from
Sressvs MCYS)
1 0.06617 463200 (~479400)
2 0.03329 233100 (~234200)
3 0.03753 262700 (~280100)
4 0.06981 488700 (~514100)
Gap Area Estimated M C steps
1 0.01154 80800
2 0.00333 23300
3 0.00397 27800
4 0.00448 31300
5 0.00771 54000

Table 2




