100 research outputs found

    Human-like interactions prompt people to take a robot’s perspective

    Get PDF
    The increasing need for human-robot interaction requires not only robots to understand how humans think, but also humans to understand robots. Interestingly, little attention has been given to how humans interpret robots’ behaviors. In this study, we adopted a social mental rotation task and investigated whether socially engaging behaviors could influence how people take a robot’s perspectives. In a real lab, two android robots with neutral appearance sat opposite each other by a table with conflicting perspectives. Before the participant started the experiment, one of the robots behaved more interactively than the other by showing more socially engaging behaviors. Then the participant was required to identify rotated normal or mirrored digits presented inbetween the two robots. Results revealed a significant interactive effect between the digits type (normal; mirrored) and robot type (interactive; noninteractive). When digits were oriented to the interactive robot, we found a larger RT difference between normal and mirrored digits. In general, these findings suggested that robots’ interactive behaviors could influence how people spontaneously consider the robot’s perspective. Future studies may further consider how interactive behaviors can shape human-robot relationships and facilitate human-robot interaction

    Robot tutors:Welcome or ethically questionable?

    Get PDF
    Robot tutors provide new opportunities for education. However, they also introduce moral challenges. This study reports a systematic literature re-view (N = 256) aimed at identifying the moral considerations related to ro-bots in education. While our findings suggest that robot tutors hold great potential for improving education, there are multiple values of both (special needs) children and teachers that are impacted (positively and negatively) by its introduction. Positive values related to robot tutors are: psychological welfare and happiness, efficiency, freedom from bias and usability. However, there are also concerns that robot tutors may negatively impact these same values. Other concerns relate to the values of friendship and attachment, human contact, deception and trust, privacy, security, safety and accountability. All these values relate to children and teachers. The moral values of other stakeholder groups, such as parents, are overlooked in the existing literature. The results suggest that, while there is a potential for ap-plying robot tutors in a morally justified way, there are imported stake-holder groups that need to be consulted to also take their moral values into consideration by implementing tutor robots in an educational setting. (from Narcis.nl

    Intracellular Trafficking of the Amyloid β-Protein Precursor (APP) Regulated by Novel Function of X11-Like

    Get PDF
    Background: Amyloid beta (A beta), a causative peptide of Alzheimer's disease, is generated by intracellular metabolism of amyloid beta-protein precursor (APP). In general, mature APP (mAPP, N- and O-glycosylated form) is subject to successive cleavages by alpha- or beta-, and gamma-secretases in the late protein secretory pathway and/or at plasma membrane, while immature APP (imAPP, N-glycosylated form) locates in the early secretory pathway such as endoplasmic reticulum or cis-Golgi, in which imAPP is not subject to metabolic cleavages. X11-like (X11L) is a neural adaptor protein composed of a phosphotyrosine-binding (PTB) and two C-terminal PDZ domains. X11L suppresses amyloidogenic cleavage of mAPP by direct binding of X11L through its PTB domain, thereby generation of A beta lowers. X11L expresses another function in the regulation of intracellular APP trafficking. Methodology: In order to analyze novel function of X11L in intracellular trafficking of APP, we performed a functional dissection of X11L. Using cells expressing various domain-deleted X11L mutants, intracellular APP trafficking was examined along with analysis of APP metabolism including maturation (O-glycosylation), processing and localization of APP. Conclusions: X11L accumulates imAPP into the early secretory pathway by mediation of its C-terminal PDZ domains, without being bound to imAPP directly. With this novel function, X11L suppresses overall APP metabolism and results in further suppression of Ab generation. Interestingly some of the accumulated imAPP in the early secretory pathway are likely to appear on plasma membrane by unidentified mechanism. Trafficking of imAPP to plasma membrane is observed in other X11 family proteins, X11 and X11L2, but not in other APP-binding partners such as FE65 and JIP1. It is herein clear that respective functional domains of X11L regulate APP metabolism at multiple steps in intracellular protein secretory pathways

    S-allylmercaptocysteine scavenges hydroxyl radical and singlet oxygen in vitro and attenuates gentamicin-induced oxidative and nitrosative stress and renal damage in vivo

    Get PDF
    BACKGROUND: Oxidative and nitrosative stress have been involved in gentamicin-induced nephrotoxicity. The purpose of this work was to study the effect of S-allylmercaptocysteine, a garlic derived compound, on gentamicin-induced oxidative and nitrosative stress and nephrotoxicity. In addition, the in vitro reactive oxygen species scavenging properties of S-allylmercaptocysteine were studied. RESULTS: S-allylmercaptocysteine was able to scavenge hydroxyl radicals and singlet oxygen in vitro. In rats treated with gentamicin (70 mg/Kg body weight, subcutaneously, every 12 h, for 4 days), renal oxidative stress was made evident by the increase in protein carbonyl content and 4-hydroxy-2-nonenal, and the nitrosative stress was made evident by the increase in 3-nitrotyrosine. In addition, gentamicin-induced nephrotoxicity was evident by the: (1) decrease in creatinine clearance and in activity of circulating glutathione peroxidase, and (2) increase in urinary excretion of N-acetyl-β-D-glucosaminidase, and (3) necrosis of proximal tubular cells. Gentamicin-induced oxidative and nitrosative stress and nephrotoxicity were attenuated by S-allylmercaptocysteine treatment (100 mg/Kg body weight, intragastrically, 24 h before the first dose of gentamicin and 50 mg/Kg body weight, intragastrically, every 12 h, for 4 days along gentamicin-treatment). CONCLUSION: In conclusion, S-allylmercaptocysteine is able to scavenge hydroxyl radicals and singlet oxygen in vitro and to ameliorate the gentamicin-induced nephrotoxicity and oxidative and nitrosative stress in vivo

    Focus on collagen: in vitro systems to study fibrogenesis and antifibrosis _ state of the art

    Get PDF
    Fibrosis represents a major global disease burden, yet a potent antifibrotic compound is still not in sight. Part of the explanation for this situation is the difficulties that both academic laboratories and research and development departments in the pharmaceutical industry have been facing in re-enacting the fibrotic process in vitro for screening procedures prior to animal testing. Effective in vitro characterization of antifibrotic compounds has been hampered by cell culture settings that are lacking crucial cofactors or are not holistic representations of the biosynthetic and depositional pathway leading to the formation of an insoluble pericellular collagen matrix. In order to appreciate the task which in vitro screening of antifibrotics is up against, we will first review the fibrotic process by categorizing it into events that are upstream of collagen biosynthesis and the actual biosynthetic and depositional cascade of collagen I. We point out oversights such as the omission of vitamin C, a vital cofactor for the production of stable procollagen molecules, as well as the little known in vitro tardy procollagen processing by collagen C-proteinase/BMP-1, another reason for minimal collagen deposition in cell culture. We review current methods of cell culture and collagen quantitation vis-à-vis the high content options and requirements for normalization against cell number for meaningful data retrieval. Only when collagen has formed a fibrillar matrix that becomes cross-linked, invested with ligands, and can be remodelled and resorbed, the complete picture of fibrogenesis can be reflected in vitro. We show here how this can be achieved. A well thought-out in vitro fibrogenesis system represents the missing link between brute force chemical library screens and rational animal experimentation, thus providing both cost-effectiveness and streamlined procedures towards the development of better antifibrotic drugs

    Synaptic AMPA receptor composition in development, plasticity and disease

    Get PDF

    The 14-3-3ζ Protein Binds to the Cell Adhesion Molecule L1, Promotes L1 Phosphorylation by CKII and Influences L1-Dependent Neurite Outgrowth

    Get PDF
    BACKGROUND: The cell adhesion molecule L1 is crucial for mammalian nervous system development. L1 acts as a mediator of signaling events through its intracellular domain, which comprises a putative binding site for 14-3-3 proteins. These regulators of diverse cellular processes are abundant in the brain and preferentially expressed by neurons. In this study, we investigated whether L1 interacts with 14-3-3 proteins, how this interaction is mediated, and whether 14-3-3 proteins influence the function of L1. METHODOLOGY/PRINCIPAL FINDINGS: By immunoprecipitation, we demonstrated that 14-3-3 proteins are associated with L1 in mouse brain. The site of 14-3-3 interaction in the L1 intracellular domain (L1ICD), which was identified by site-directed mutagenesis and direct binding assays, is phosphorylated by casein kinase II (CKII), and CKII phosphorylation of the L1ICD enhances binding of the 14-3-3 zeta isoform (14-3-3ζ). Interestingly, in an in vitro phosphorylation assay, 14-3-3ζ promoted CKII-dependent phosphorylation of the L1ICD. Given that L1 phosphorylation by CKII has been implicated in L1-triggered axonal elongation, we investigated the influence of 14-3-3ζ on L1-dependent neurite outgrowth. We found that expression of a mutated form of 14-3-3ζ, which impairs interactions of 14-3-3ζ with its binding partners, stimulated neurite elongation from cultured rat hippocampal neurons, supporting a functional connection between L1 and 14-3-3ζ. CONCLUSIONS/SIGNIFICANCE: Our results suggest that 14-3-3ζ, a novel direct binding partner of the L1ICD, promotes L1 phosphorylation by CKII in the central nervous system, and regulates neurite outgrowth, an important biological process triggered by L1
    corecore