155 research outputs found

    Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts

    No full text
    A comprehensive characterization of the lipidome from limited starting material remains very challenging. Here we report a high-sensitivity lipidomics workflow based on nanoflow liquid chromatography and trapped ion mobility spectrometry (TIMS). Taking advantage of parallel accumulation-serial fragmentation (PASEF), we fragment on average 15 precursors in each of 100 ms TIMS scans, while maintaining the full mobility resolution of co-eluting isomers. The acquisition speed of over 100 Hz allows us to obtain MS/MS spectra of the vast majority of isotope patterns. Analyzing 1 mu L of human plasma, PASEF increases the number of identified lipids more than three times over standard TIMS-MS/MS, achieving attomole sensitivity. Building on high intra- and inter-laboratory precision and accuracy of TIMS collisional cross sections (CCS), we compile 1856 lipid CCS values from plasma, liver and cancer cells. Our study establishes PASEF in lipid analysis and paves the way for sensitive, ion mobility-enhanced lipidomics in four dimensions

    First families with spinocerebellar ataxia type 7 in Poland

    Get PDF
    Introduction. We present the first two Polish families diagnosed with spinocerebellar ataxia type 7 (SCA7) and draw attention to cardiac involvement as a new potential manifestation of this disease. Material and methods. Two well-documented kindreds are presented. Results. The proband from Family 1 presented aged 54 years with vision worsening followed by progressive imbalance. Brain MRI demonstrated cerebellar atrophy. Genetic testing confirmed CAG repeat expansion (42/10) in ATXN7 gene. The proband from Family 2 developed imbalance at age 20, followed by progressive deterioration of vision. Brain MRI revealed cerebellar atrophy. Additionally, she developed chronic congestive heart failure and, at age 38, had cardiomyopathy with an ejection fraction of 20% and significant mitral and tricuspid regurgitation. Genetic analysis found abnormal CAG expansion in the ATXN7 (46/10). Conclusions and clinical implications. Vision loss due to pigmentary retinal degeneration is the distinguishing feature of SCA7 and often the initial manifestation. Although SCA7 is one of the most common SCAs in Sweden, it has never been reported in neighbouring Poland. Until now, cardiac abnormalities have only been described in infantile-onset SCA7 with large CAG repeats. The observed cardiac involvement in Family 2 may be coincidental, albeit a new possible manifestation of SCA7 cannot be excluded

    Original Article

    Get PDF
    Objective: Glucagon is well known to regulate blood glucose but may be equally important for amino acid metabolism. Plasma levels of amino acids are regulated by glucagon-dependent mechanism(s), while amino acids stimulate glucagon secretion from alpha cells, completing the recently described liver-alpha cell axis. The mechanisms underlying the cycle and the possible impact of hepatic steatosis are unclear. Methods: We assessed amino acid clearance in vivo in mice treated with a glucagon receptor antagonist (GRA), transgenic mice with 95% reduction in alpha cells, and mice with hepatic steatosis. In addition, we evaluated urea formation in primary hepatocytes from ob/ob mice and humans, and we studied acute metabolic effects of glucagon in perfused rat livers. We also performed RNA sequencing on livers from glucagon receptor knock-out mice and mice with hepatic steatosis. Finally, we measured individual plasma amino acids and glucagon in healthy controls and in two independent cohorts of patients with biopsy-verified non-alcoholic fatty liver disease (NAFLD). Results: Amino acid clearance was reduced in mice treated with GRA and mice lacking endogenous glucagon (loss of alpha cells) concomitantly with reduced production of urea. Glucagon administration markedly changed the secretion of rat liver metabolites and within minutes increased urea formation in mice, in perfused rat liver, and in primary human hepatocytes. Transcriptomic analyses revealed that three genes responsible for amino acid catabolism (Cps1, Slc7a2, and Slc38a2) were downregulated both in mice with hepatic steatosis and in mice with deletion of the glucagon receptor. Cultured ob/ob hepatocytes produced less urea upon stimulation with mixed amino acids, and amino acid clearance was lower in mice with hepatic steatosis. Glucagon-induced ureagenesis was impaired in perfused rat livers with hepatic steatosis. Patients with NAFLD had hyperglucagonemia and increased levels of glucagonotropic amino acids, including alanine in particular. Both glucagon and alanine levels were reduced after diet-induced reduction in Homeostatic Model Assessment for Insulin Resistance (HOMA-IR, a marker of hepatic steatosis). Conclusions: Glucagon regulates amino acid metabolism both non-transcriptionally and transcriptionally. Hepatic steatosis may impair glucagon-dependent enhancement of amino acid catabolism. (C) 2020 The Author(s). Published by Elsevier GmbH

    Development and test of a segmented Time-of-Flight plastic detector

    Get PDF
    Path planning problems involve computing or finding a collision free path between two positions. A special kind of path planning is complete coverage path planning, where a robot sweeps all area of free space in an environment. There are different methods to cover the complete area; however, they are not designed to optimize the process. This paper proposes a novel method of complete coverage path planning based on genetic algorithms. In order to check the viability of this approach the optimal path is tested in a virtual environment. The simulation results confirm the feasibility of this method

    Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity

    Get PDF
    Objective: Given that cellular O-GlcNAcylation levels are thought to be real-time measures of cellular nutrient status and dysregulated O-GlcNAc signaling is associated with insulin resistance, we evaluated the role of O-GlcNAc transferase (OGT), the enzyme that mediates O-GlcNAcylation, in skeletal muscle. Methods: We assessed O-GlcNAcylation levels in skeletal muscle from obese, type 2 diabetic people, and we characterized muscle-specific OGT knockout (mKO) mice in metabolic cages and measured energy expenditure and substrate utilization pattern using indirect calorimetry. Whole body insulin sensitivity was assessed using the hyperinsulinemic euglycemic clamp technique and tissue-specific glucose uptake was subsequently evaluated. Tissues were used for histology, qPCR, Western blot, co-immunoprecipitation, and chromatin immunoprecipitation analyses. Results: We found elevated levels of O-GlcNAc-modified proteins in obese, type 2 diabetic people compared with well-matched obese and lean controls. Muscle-specific OGT knockout mice were lean, and whole body energy expenditure and insulin sensitivity were increased in these mice, consistent with enhanced glucose uptake and elevated glycolytic enzyme activities in skeletal muscle. Moreover, enhanced glucose uptake was also observed in white adipose tissue that was browner than that of WT mice. Interestingly, mKO mice had elevated mRNA levels of Il15 in skeletal muscle and increased circulating IL-15 levels. We found that OGT in muscle mediates transcriptional repression of Il15 by O-GlcNAcylating Enhancer of Zeste Homolog 2 (EZH2). Conclusions: Elevated muscle O-GlcNAc levels paralleled insulin resistance and type 2 diabetes in humans. Moreover, OGT-mediated signaling is necessary for proper skeletal muscle metabolism and whole-body energy homeostasis, and our data highlight O-GlcNAcylation as a potential target for ameliorating metabolic disorders. Keywords: O-GlcNAc signaling, Type 2 diabetes, N-acetyl-d-glucosamine, Tissue cross talk, Epigenetic regulation of Il15 transcription, Insulin sensitivit
    • …
    corecore