13 research outputs found

    Preparation of Iron Nanoparticles by Selective Leaching Method

    No full text
    Iron nanoparticles were prepared by selective leaching method. Initially the rapidly solidified AlFe11 alloy was prepared and consequently the aluminium matrix was dissolved from this alloy in 20% NaOH solution. This process was carried out at 0 and 80°C. At lower temperature, the iron nanoparticles covered by thin layer of Fe(OH)₃ were successfully obtained. The size of formed nanoparticles was about 8 nm and the particles exhibited massive agglomeration. It is not limitation of the process, because the application of nanoparticles is as a precursor for production of bulk nanocrystalline materials (metals, alloys and metal matrix composites). At higher temperature, the selective leaching process failed and iron was oxidized to different hydroxides. Aluminium containing waste liquid from selective leaching was used for production of powder Al₂O₃. Initial alloys and products were characterized by X-ray diffraction, scanning electron microscopy, and high resolution transmission electron microscopy

    ETFE-based anion-exchange membrane ionomer powders for alkaline membrane fuel cells: A first performance comparison of head-group chemistry

    Get PDF
    In the last few years, the development of radiation-grafted powder-form anion-exchange ionomers (AEI), used in combination with anion-exchange membranes (AEM), has led to the assembly of AEM-based fuel cells (AEMFC) that routinely yield power densities ranging between 1-2 W cm-2 (with a variety of catalysts). However, to date, only benzyltrimethylammonium-type powder AEIs have been evaluated in AEMFCs. This study presents an initial evaluation of the relative AEMFC power outputs when using a combination of ETFE-based radiation-grafted AEMs and AEIs containing three different head-group chemistries: benzyltrimethylammonium (TMA), benzyl-N-methylpyrrolidinium (MPY), and benzyl-N-methylpiperidinium (MPRD). The results from this study strongly suggest that future research should focus on the development and operando long-term durability testing of AEMs and AEIs containing the MPRD head-group chemistryThe research was funded by the Engineering and Physical Sciences Research Council (EPSRC grants EP/M014371/1, EP/M022749/1, and EP/M005933/1). ALGB's exchange was funded by FAPESP grants 2016/13277-9 and 2015/09210-3, while EIS' exchange was funded by FAPESP grants 2015/23621-6, 2014/09087-4 and 2014/50279-4. DH's student-exchange was funded by a PDIF Short Stay Scholarship of the Autonomous University of Madrid. GS' 2015 exchange was funded by the ERASMUS+work placement schem
    corecore