1,807 research outputs found

    International migration in western Europe

    Get PDF

    The future of antiviral immunotoxins

    Get PDF
    Abstract There is a constant need for new therapeutic interventions in a wide range of infectious diseases. Over the past few years, the immunotoxins have entered the stage as promising antiviral treatments. Immunotoxins have been extensively explored in cancer treatment and have achieved FDA approval in several cases. Indeed, the design of new anticancer immunotoxins is a rapidly developing field. However, at present, several immunotoxins have been developed targeting a variety of different viruses with high specificity and efficacy. Rather than blocking a viral or cellular pathway needed for virus replication and dissemination, immunotoxins exert their effect by killing and eradicating the pool of infected cells. By targeting a virus-encoded target molecule, it is possible to obtain superior selectivity and drastically limit the side effects, which is an immunotoxin-related challenge that has hindered the success of immunotoxins in cancer treatment. Therefore, it seems beneficial to use immunotoxins for the treatment of virus infections. One recent example showed that targeting of virus-encoded 7 transmembrane (7TM) receptors by immunotoxins could be a future strategy for designing ultraspecific antiviral treatment, ensuring efficient internalization and hence efficient eradication of the pool of infected cells, both in vitro and in vivo. In this review, we provide an overview of the mechanisms of action of immunotoxins and highlight the advantages of immunotoxins as future anti-viral therapies.</jats:p

    Using a Smart Recognition Framework for the Automated Transfer of Structural Whole Engine Models

    Get PDF
    The development of adequate simulation models from geometric CAD assemblies is one of the most important tasks in early design phases. With this step requiring a lot of manual effort, the desire for a process efficiency improvement via an automated solution rises. In order to derive information about the assembly to build Finite-Element (FE) models, various different steps have to be taken which require visual assessment and engineering evaluation, knowledge and judgement. The approach described in this research mimics the engineer's logic and way of thinking to automate these steps. Thereof, the recognition of entities plays a fundamental role for further processing. To achieve the desired recognition, methods have been developed to retrieve criteria like form, function, context and positioning from the available geometry data. The developed recognition framework supports and provides a component categorization so that specifically optimized process chains for each category can be implemented, depicting a more robust and reasonable overall process

    Auxin Input Pathway Disruptions Are Mitigated by Changes in Ausin Biosynthetic Gene Expression in Arabidopsis

    Get PDF
    Auxin is a phytohormone involved in cell elongation and division. Levels of indole-3-acetic acid (IAA), the primary auxin, are tightly regulated through biosynthesis, degradation, sequestration, and transport. IAA is sequestered in reversible processes by adding amino acids, polyol or simple alcohols, or sugars, forming IAA conjugates, or through a two-carbon elongation forming indole-3-butyric acid. These sequestered forms of IAA alter hormone activity. To gain a better understanding of how auxin homeostasis is maintained, we have generated Arabidopsis (Arabidopsis tlnaliana) mutants that combine disruptions in the pathways, converting IAA conjugates and indole-3-butyric acid to free IAA. These mutants show phenotypes indicative of low auxin levels, including delayed germination, abnormal vein patterning, and decreased apical dominance. Root phenotypes include changes in root length, root branching, and root hair growth. IAA levels are reduced in the cotyledon tissue but not meristems or hypocotyls. In the combination mutants, auxin biosynthetic gene expression is increased, particularly in the YUCCA/Tryptophan Aminotransferase of Arabidopsisl pathway, providing a feedback mechanism that allows the plant to compensate for changes in IAA input pathways and maintain cellular homeostasis

    Asbestos modulates thioredoxin-thioredoxin interacting protein interaction to regulate inflammasome activation

    Get PDF
    BACKGROUND: Asbestos exposure is related to various diseases including asbestosis and malignant mesothelioma (MM). Among the pathogenic mechanisms proposed by which asbestos can cause diseases involving epithelial and mesothelial cells, the most widely accepted one is the generation of reactive oxygen species and/or depletion of antioxidants like glutathione. It has also been demonstrated that asbestos can induce inflammation, perhaps due to activation of inflammasomes. METHODS: The oxidation state of thioredoxin was analyzed by redox Western blot analysis and ROS generation was assessed spectrophotometrically as a read-out of solubilized formazan produced by the reduction of nitrotetrazolium blue (NTB) by superoxide. Quantitative real time PCR was used to assess changes in gene transcription. RESULTS: Here we demonstrate that crocidolite asbestos fibers oxidize the pool of the antioxidant, Thioredoxin-1 (Trx1), which results in release of Thioredoxin Interacting Protein (TXNIP) and subsequent activation of inflammasomes in human mesothelial cells. Exposure to crocidolite asbestos resulted in the depletion of reduced Trx1 in human peritoneal mesothelial (LP9/hTERT) cells. Pretreatment with the antioxidant dehydroascorbic acid (a reactive oxygen species (ROS) scavenger) reduced the level of crocidolite asbestos-induced Trx1 oxidation as well as the depletion of reduced Trx1. Increasing Trx1 expression levels using a Trx1 over-expression vector, reduced the extent of Trx1 oxidation and generation of ROS by crocidolite asbestos, and increased cell survival. In addition, knockdown of TXNIP expression by siRNA attenuated crocidolite asbestos-induced activation of the inflammasome. CONCLUSION: Our novel findings suggest that extensive Trx1 oxidation and TXNIP dissociation may be one of the mechanisms by which crocidolite asbestos activates the inflammasome and helps in development of MM
    corecore