52 research outputs found

    Bias in the journal impact factor

    Full text link
    The ISI journal impact factor (JIF) is based on a sample that may represent half the whole-of-life citations to some journals, but a small fraction (<10%) of the citations accruing to other journals. This disproportionate sampling means that the JIF provides a misleading indication of the true impact of journals, biased in favour of journals that have a rapid rather than a prolonged impact. Many journals exhibit a consistent pattern of citation accrual from year to year, so it may be possible to adjust the JIF to provide a more reliable indication of a journal's impact.Comment: 9 pages, 8 figures; one reference correcte

    Impact Factor: outdated artefact or stepping-stone to journal certification?

    Full text link
    A review of Garfield's journal impact factor and its specific implementation as the Thomson Reuters Impact Factor reveals several weaknesses in this commonly-used indicator of journal standing. Key limitations include the mismatch between citing and cited documents, the deceptive display of three decimals that belies the real precision, and the absence of confidence intervals. These are minor issues that are easily amended and should be corrected, but more substantive improvements are needed. There are indications that the scientific community seeks and needs better certification of journal procedures to improve the quality of published science. Comprehensive certification of editorial and review procedures could help ensure adequate procedures to detect duplicate and fraudulent submissions.Comment: 25 pages, 12 figures, 6 table

    An overview of the utilisation of microalgae biomass derived from nutrient recycling of wet market wastewater and slaughterhouse wastewater

    Get PDF
    Microalgae have high nutritional values for aquatic organisms compared to fish meal, because microalgae cells are rich in proteins, lipids, and carbohydrates. However, the high cost for the commercial production of microalgae biomass using fresh water or artificial media limits its use as fish feed. Few studies have investigated the potential of wet market wastewater and slaughterhouse wastewater for the production of microalgae biomass. Hence, this study aims to highlight the potential of these types of wastewater as an alternative superior medium for microalgae biomass as they contain high levels of nutrients required for microalgae growth. This paper focuses on the benefits of microalgae biomass produced during the phycore-mediation of wet market wastewater and slaughterhouse wastewater as fish feed. The extraction techniques for lipids and proteins as well as the studies conducted on the use of microalgae biomass as fish feed were reviewed. The results showed that microalgae biomass can be used as fish feed due to feed utilisation efficiency, physiological activity, increased resistance for several diseases, improved stress response, and improved protein retention

    Photodegradation profiles of PVC compound and wood/PVC composites under UV weathering

    No full text
    This work aimed to study the effect of different ultraviolet (UV) weathering conditions (natural and accelerated) on the photodegradation of polyvinyl chloride (PVC) and wood/polyvinyl chloride (WPVC) composites by considering the structural and physical changes of PVC and WPVC samples as well as examining the photodegradation profiles at different depths from the sample surfaces. The photodegradation of PVC and WPVC composites under natural weathering conditions were lower than those under accelerated weathering conditions. The addition of Tinuvin P stabilizer at 2 phr was sufficient to stabilize PVC and WPVC composites, whereas the presence of wood appeared to accelerate the photodegradation of PVC under both natural and accelerated weathering conditions. When considering the photodegradation profiles at different depths of the samples, it was found that the polyene and carbonyl sequences of PVC and WPVC composites were high at the sample surfaces and tended to decrease rapidly with increasing depth from the specimen surface before stabilizing at a depth of 60 &#956;m for PVC and 80 &#956;m for WPVC composites. The differences in specimen depths for the stabilization of polyene and carbonyl sequences in PVC and WPVC samples implied that the presence of wood particles enhanced the absorption of UV radiation by the WPVC composite samples

    Effects of UV-accelerated weathering and natural weathering conditions on anti-fungal efficacy of wood/PVC composites doped with propylene glycol-based HPQM

    No full text
    This work studied the mechanical, physical and weathering properties and anti-fungal efficacy of polyvinyl chloride(PVC) and wood flour/polyvinyl chloride composites(WPVC). 2-hydroxypropyl-3-piperazinyl-quinoline carboxylic acid methacrylate (HPQM) in propylene glycol was used as an anti-fungal agent. Propylene glycol-based HPQM was doped in neat PVC and in WPVC containing 50 and 100 pph wood (WPVC-50 and WPVC-100). The flexural properties of PVC decreased when propylene glycol-based HPQM was added. However, adding this component did not affect the flexural properties of WPVC. Fungal growth inhibition test and dry weight technique were used for evaluation of anti-fungal effectiveness. Aspergillus niger was used as a testing fungus. Adding propylene glycol-based HPQM to WPVC-100 led to the most effective anti-fungal performance. Wood flour acted as an anti-fungal promoter for the WPVC composites. The optimal dosages of propylene glycol-based HPQM in PVC, WPVC-50, and WPVC-100 were 50000, 15000, and 10000 ppm, respectively. UV-accelerated weathering aging and natural weathering conditions were found to affect the flexural properties of PVC and WPVC. The change in the anti-microbial performance of WPVC under natural weathering were slower than those under UV-accelerated weathering aging. The anti-microbial evaluation indicated that the samples doped with less than 20000 ppm propylene glycol-based HPQM had a more pronounced effect than the ones doped with higher dosages

    Effects of recycled PVC content and processing temperature on the properties of PVC foam products

    No full text
    This work used different types of recycled PVC products including PVC pipes and bottles, as rigid recyclates, and PVC plastic coverings, as soft recyclate. The PVC recyclates were added into virgin PVC foam, ranging from 0-100wt%. The PVC blends were then moulded with different processing temperatures, and their properties were monitored. It was found that the concentration of the pipe recyclates up to 60 wt% could be used to add into the PVC virgin for production of rigid PVC foam products. The higher the recyclate content led to the higher the blend density and the mechanical properties (flexural and impact strength, and hardness). For bottle recyclates, up to 60 wt% of bottle recyclates could be used for rigid PVC foam production, but the overall properties, except for the impact strength, of the PVC foam did not improve withincreasing the recycled bottles. For recycled coverings, increasing plastic coverings led to an increase in average cell size, but resulted in decreases of impact and hardness resistances. The flexible or soft PVC foam products could be manufactured with use of 0-100wt% recycled coverings. In summary, it could be concludedthat recyclates of pipes, bottles and plastic coverings can be mixed with virgin PVC foam for making foam products
    corecore