132 research outputs found

    First-principles study of the inversion thermodynamics and electronic structure of FeM2X4 (thio)spinels (M = Cr, Mn, Co, Ni; X = O, S)

    Get PDF
    FeM2X4 spinels, where M is a transition metal and X is oxygen or sulfur, are candidate materials for spin filters, one of the key devices in spintronics. We present here a computational study of the inversion thermodynamics and the electronic structure of these (thio)spinels for M = Cr, Mn, Co, Ni, using calculations based on the density functional theory with on-site Hubbard corrections (DFT+U). The analysis of the configurational free energies shows that different behaviour is expected for the equilibrium cation distributions in these structures: FeCr2X4 and FeMn2S4 are fully normal, FeNi2X4 and FeCo2S4 are intermediate, and FeCo2O4 and FeMn2O4 are fully inverted. We have analyzed the role played by the size of the ions and by the crystal field stabilization effects in determining the equilibrium inversion degree. We also discuss how the electronic and magnetic structure of these spinels is modified by the degree of inversion, assuming that this could be varied from the equilibrium value. We have obtained electronic densities of states for the completely normal and completely inverse cation distribution of each compound. FeCr2X4, FeMn2X4, FeCo2O4 and FeNi2O4 are half-metals in the ferrimagnetic state when Fe is in tetrahedral positions. When M is filling the tetrahedral positions, the Cr-containing compounds and FeMn2O4 are half-metallic systems, while the Co and Ni spinels are insulators. The Co and Ni sulfide counterparts are metallic for any inversion degree together with the inverse FeMn2S4. Our calculations suggest that the spin filtering properties of the FeM2X4 (thio)spinels could be modified via the control of the cation distribution through variations in the synthesis conditions

    Justification of teaching higher mathematics in high school

    No full text
    There is no abstract available for this research paper.Thesis (M.A.E.

    Norepinephrine stimulates the epithelial Na +

    No full text
    There is good evidence for a causal link between excessive sympathetic drive to the kidney and hypertension. We hypothesized that sympathetic regulation of tubular Na+ absorption may occur in the aldosterone-sensitive distal nephron, where the fine tuning of renal Na+ excretion takes place. Here, the appropriate regulation of transepithelial Na+ transport, mediated by the amiloride-sensitive epithelial Na+ channel (ENaC), is critical for blood pressure control. To explore a possible effect of the sympathetic transmitter norepinephrine on ENaC-mediated Na+ transport, we performed short-circuit current (Isc) measurements on confluent mCCDcl1 murine cortical collecting duct cells. Norepinephrine caused a complex Isc response with a sustained increase of amiloride-sensitive Isc by ∼44%. This effect was concentration dependent and mediated via basolateral α2-adrenoceptors. In cells pretreated with aldosterone, the stimulatory effect of norepinephrine was reduced. Finally, we demonstrated that noradrenergic nerve fibers are present in close proximity to ENaC-expressing cells in murine kidney slices. We conclude that the sustained stimulatory effect of locally elevated norepinephrine on ENaC-mediated Na+ absorption may contribute to the hypertensive effect of increased renal sympathetic activity.</p

    Using the yes/no recognition response pattern to detect memory malingering

    Get PDF
    Schindler S, Kißler J, Kühl K-P, Hellweg R, Bengner T. Using the yes/no recognition response pattern to detect memory malingering. BMC Psychology. 2013;1(1): 12.Background Detection of feigned neurocognitive deficits is a challenge for neuropsychological assessment. We conducted two studies to examine whether memory malingering is characterized by an elevated proportion of false negatives during yes/no recognition testing and whether this could be a useful measure for assessment. Methods Study 1 examined 51 participants claiming compensation due to mental disorders, 51 patients with affective disorders not claiming compensation and 13 patients with established dementia. Claimants were sub-divided into suspected malingerers (n = 11) and non-malingerers (n = 40) according to the Test of Memory Malingering (TOMM). In study 2, non-clinical participants were instructed to either malinger memory deficits due to depression (n = 20), or to perform normally (n = 20). Results In study 1, suspected malingerers had more false negative responses on the recognition test than all other groups and false negative responding was correlated with Minnesota-Multiphasic Personality Inventory (MMPI) measures of deception. In study 2, using a cut-off score derived from the clinical study, the number of false negative responses on the yes/no recognition test predicted group membership with comparable accuracy as the TOMM, combining both measures yielded the best classification. Upon interview, participants suspected the TOMM more often as a malingering test than the yes/no recognition test. Conclusion Results indicate that many malingers adopt a strategy of exaggerated false negative responding on a yes/no recognition memory test. This differentiates them from both dementia and affective disorder, recommending false negative responses as an efficient and inconspicuous screening measure of memory malingering
    corecore