38 research outputs found

    Global mean surface temperature and climate sensitivity of the early Eocene Climatic Optimum (EECO), Paleocene–Eocene Thermal Maximum (PETM), and latest Paleocene

    Get PDF
    Accurate estimates of past global mean surface temperature (GMST) help to contextualise future climate change and are required to estimate the sensitivity of the climate system to CO2 forcing through Earth's history. Previous GMST estimates for the latest Paleocene and early Eocene (∼57 to 48 million years ago) span a wide range (∼9 to 23 ∘C higher than pre-industrial) and prevent an accurate assessment of climate sensitivity during this extreme greenhouse climate interval. Using the most recent data compilations, we employ a multi-method experimental framework to calculate GMST during the three DeepMIP target intervals: (1) the latest Paleocene (∼57 Ma), (2) the Paleocene–Eocene Thermal Maximum (PETM; 56 Ma), and (3) the early Eocene Climatic Optimum (EECO; 53.3 to 49.1 Ma). Using six different methodologies, we find that the average GMST estimate (66 % confidence) during the latest Paleocene, PETM, and EECO was 26.3 ∘C (22.3 to 28.3 ∘C), 31.6 ∘C (27.2 to 34.5 ∘C), and 27.0 ∘C (23.2 to 29.7 ∘C), respectively. GMST estimates from the EECO are ∼10 to 16 ∘C warmer than pre-industrial, higher than the estimate given by the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (9 to 14 ∘C higher than pre-industrial). Leveraging the large “signal” associated with these extreme warm climates, we combine estimates of GMST and CO2 from the latest Paleocene, PETM, and EECO to calculate gross estimates of the average climate sensitivity between the early Paleogene and today. We demonstrate that “bulk” equilibrium climate sensitivity (ECS; 66 % confidence) during the latest Paleocene, PETM, and EECO is 4.5 ∘C (2.4 to 6.8 ∘C), 3.6 ∘C (2.3 to 4.7 ∘C), and 3.1 ∘C (1.8 to 4.4 ∘C) per doubling of CO2. These values are generally similar to those assessed by the IPCC (1.5 to 4.5 ∘C per doubling CO2) but appear incompatible with low ECS values (<1.5 per doubling CO2)

    Human resources for health policies: a critical component in health policies

    Get PDF
    In the last few years, increasing attention has been paid to the development of health policies. But side by side with the presumed benefits of policy, many analysts share the opinion that a major drawback of health policies is their failure to make room for issues of human resources. Current approaches in human resources suggest a number of weaknesses: a reactive, ad hoc attitude towards problems of human resources; dispersal of accountability within human resources management (HRM); a limited notion of personnel administration that fails to encompass all aspects of HRM; and finally the short-term perspective of HRM. There are three broad arguments for modernizing the ways in which human resources for health are managed: • the central role of the workforce in the health sector; • the various challenges thrown up by health system reforms; • the need to anticipate the effect on the health workforce (and consequently on service provision) arising from various macroscopic social trends impinging on health systems. The absence of appropriate human resources policies is responsible, in many countries, for a chronic imbalance with multifaceted effects on the health workforce: quantitative mismatch, qualitative disparity, unequal distribution and a lack of coordination between HRM actions and health policy needs. Four proposals have been put forward to modernize how the policy process is conducted in the development of human resources for health (HRH): • to move beyond the traditional approach of personnel administration to a more global concept of HRM; • to give more weight to the integrated, interdependent and systemic nature of the different components of HRM when preparing and implementing policy; • to foster a more proactive attitude among human resources (HR) policy-makers and managers; • to promote the full commitment of all professionals and sectors in all phases of the process. The development of explicit human resources policies is a crucial link in health policies and is needed both to address the imbalances of the health workforce and to foster implementation of the health services reforms

    Analysis of pipeline accidents in the United States from 1968 to 2009

    No full text
    Pipelines are responsible for the transportation of a significant portion of the U.S. energy supply. Unfortunately, pipeline failures are common and the consequences can be catastrophic. Drawing on data from the Pipeline and Hazardous Materials Safety Administration (PHMSA) that covers approximately 40,000 incidents from 1968 to 2009, this paper explores the trends, causes and consequences of natural gas and hazardous liquid pipeline accidents. The analysis indicates that fatalities and injuries from pipeline accidents are generally decreasing over time, while property damage and, in some cases, the numbers of incidents are increasing over time. In five of the ten cases considered in this paper, the damage from pipeline accidents – in terms of injuries, fatalities and volume of product spilled – are well characterized by a power-law distribution, indicating that catastrophic pipeline accidents are more likely than would be predicted by more common “thin-tailed” distributions. The results also indicate that relatively few accidents account for a large share of total property damage, while smaller, single-fatality and single-injury incidents account for a large share of total fatalities and injuries (43% versus 32%, respectively)

    Distributed generation: Residential storage comes at a cost

    No full text

    Climate policy not so costly

    No full text
    corecore