1,974 research outputs found

    All-to-all connected networks by multi-frequency excitation of polaritons

    Full text link
    We analyze theoretically a network of all-to-all coupled polariton modes, realized by a trapped polariton condensate excited by a comb of different frequencies. In the low-density regime the system dynamically finds a state with maximal gain defined by the average intensities (weights) of the excitation beams, analogous to active mode locking in lasers, and thus solves a maximum eigenvalue problem set by the matrix of weights. The method opens the possibility to tailor a superposition of populated bosonic modes in the trapped condensate by appropriate choice of drive

    Gravitational waveforms from a point particle orbiting a Schwarzschild black hole

    Full text link
    We numerically solve the inhomogeneous Zerilli-Moncrief and Regge-Wheeler equations in the time domain. We obtain the gravitational waveforms produced by a point-particle of mass μ\mu traveling around a Schwarzschild black hole of mass M on arbitrary bound and unbound orbits. Fluxes of energy and angular momentum at infinity and the event horizon are also calculated. Results for circular orbits, selected cases of eccentric orbits, and parabolic orbits are presented. The numerical results from the time-domain code indicate that, for all three types of orbital motion, black hole absorption contributes less than 1% of the total flux, so long as the orbital radius r_p(t) satisfies r_p(t)> 5M at all times.Comment: revtex4, 24 pages, 23 figures, 3 tables, submitted to PR

    Mechanistic Studies of Antibody-Mediated Clearance of Tau Aggregates Using an ex vivo Brain Slice Model

    Get PDF
    Recent studies have shown that immunotherapy clears amyloid beta (Aβ) plaques and reduces Aβ levels in mouse models of Alzheimer’s disease (AD), as well as in AD patients. Tangle pathology is also relevant for the neurodegeneration in AD, and our studies have shown that active immunization with an AD related phospho-tau peptide reduces aggregated tau within the brain and slows the progression of tauopathy-induced behavioral impairments. Thus, clearance of neurofibrillary tangles and/or their precursors may reduce synaptic and neuronal loss associated with AD and other tauopathies. So far the mechanisms involved in antibody-mediated clearance of tau pathology are yet to be elucidated. In this study we have used a mouse brain slice model to examine the uptake and localization of FITC labeled anti-tau antibodies. Confocal microscopy analysis showed that the FITC labeled anti-tau antibody co-stained with phosphorylated tau, had a perinuclear appearance and co-localized with markers of the endosomal/lysosomal pathway. Additionally, tau and FITC–IgG were found together in an enriched lysosome fraction. In summary, antibody-mediated clearance of intracellular tau aggregates appears to occur via the lysosomal pathway

    Topics in emerging technologies:Cost optimization methods in the design of next generation networks

    Get PDF
    A key development of telecommunication systems during the past two decades has been the evolution from the circuit-switched network toward the packet-switched network paradigm. Many operators are now migrating their PSTNs from circuit switched into multipurpose packet switched networks. This new approach is often called the next-generation network (NGN). NGN enables network operators to run all services (i.e., voice, data and video) on one network. In this article the migration of Iceland Telecom's circuit-switched PSTN toward NGN will be described. A cost model of the telecommunications system has been developed to enable cost and benefits analysis of transforming the network to NGN. Methods of optimization and their application to determine the optimal number and position of nodes in the future network will be described. The optimization produces a network structure with the lowest possible total cost of ownership, and the model can also indicate how deviations from the optimum affect cost. The feasibility of NGN can be assessed by comparing the cost of NGN migration to that of maintaining the current circuitswitched network

    Stellar Dynamics of Extreme-Mass-Ratio Inspirals

    Full text link
    Inspiral of compact stellar remnants into massive black holes (MBHs) is accompanied by the emission of gravitational waves at frequencies that are potentially detectable by space-based interferometers. Event rates computed from statistical (Fokker-Planck, Monte-Carlo) approaches span a wide range due to uncertaintities about the rate coefficients. Here we present results from direct integration of the post-Newtonian N-body equations of motion descrbing dense clusters of compact stars around Schwarzschild MBHs. These simulations embody an essentially exact (at the post-Newtonian level) treatment of the interplay between stellar dynamical relaxation, relativistic precession, and gravitational-wave energy loss. The rate of capture of stars by the MBH is found to be greatly reduced by relativistic precession, which limits the ability of torques from the stellar potential to change orbital angular momenta. Penetration of this "Schwarzschild barrier" does occasionally occur, resulting in capture of stars onto orbits that gradually inspiral due to gravitational wave emission; we discuss two mechanisms for barrier penetration and find evidence for both in the simulations. We derive an approximate formula for the capture rate, which predicts that captures would be strongly disfavored from orbits with semi-major axes below a certain value; this prediction, as well as the predicted rate, are verified in the N-body integrations. We discuss the implications of our results for the detection of extreme-mass-ratio inspirals from galactic nuclei with a range of physical properties.Comment: 28 pages, 16 figures. Version 2 is significantly revised to reflect new insights into J and Q effects, to be published late

    Loss cone: past, present and future

    Full text link
    The capture and subsequent in--spiral of compact stellar remnants by central massive black holes, is one of the more interesting likely sources of gravitational radiation detectable by LISA. The relevant stellar population includes stellar mass black holes, and possibly intermediate mass black holes, generally on initially eccentric orbits. Predicted detectable rates of capture are highly uncertain, but may be high enough that source confusion is an issue. Foreground events with relatively high signal-to-noise ratio may provide important tests of general relativity. I review the rate estimates in the literature, and the apparent discrepancy between different authors' estimates, and discuss some of the relevant uncertainties and physical processes. The white dwarf mergers rate are uncertain by a factor of few; the neutron star merger rate is completely uncertain and likely to be small; the black hole merger rate is likely to be dominant for detectable mergers and is uncertain by at least two orders of magnitude, largely due to unknown physical conditions and processes. The primary difference in rate estimates is due to different initial conditions and less directly due to different estimates of key physical processes, assumed in different model scenarios for in-spiral and capture.Comment: 7 pages, revtex twocolumn, Special LISA Issue Classical and Quantum Gravity in pres

    Estimating the detectable rate of capture of stellar mass black holes by massive central black holes in normal galaxies

    Get PDF
    The capture and subsequent inspiral of stellar mass black holes on eccentric orbits by central massive black holes, is one of the more interesting likely sources of gravitational radiation detectable by LISA. We estimate the rate of observable events and the associated uncertainties. A moderately favourable mass function could provide many detectable bursts each year, and a detection of at least one burst per year is very likely given our current understanding of the populations in cores of normal spiral galaxies.Comment: 3 pages 2-column revtex Latex macro. No figures. Classical and Quantum Gravity, accepte

    Elevation Change of Drangajokull, Iceland, from Cloud-Cleared ICESat Repeat Profiles and GPS Ground-Survey Data

    Get PDF
    Located on the Vestfirdir Northwest Fjords), DrangaJokull is the northernmost ice map in Iceland. Currently, the ice cap exceeds 900 m in elevation and covered an area of approx.l46 sq km in August 2004. It was about 204 sq km in area during 1913-1914 and so has lost mass during the 20th century. Drangajokull's size and accessibility for GPS surveys as well as the availability of repeat satellite altimetry profiles since late 2003 make it a good subject for change-detection analysis. The ice cap was surveyed by four GPS-equipped snowmobiles on 19-20 April 2005 and has been profiled in two places by Ice, Cloud. and land Elevation Satellite (ICESat) 'repeat tracks,' fifteen times from late to early 2009. In addition, traditional mass-balance measurements have been taken seasonally at a number of locations across the ice cap and they show positive net mass balances in 2004/2005 through 2006/2007. Mean elevation differences between the temporally-closest ICESat profiles and the GPS-derived digital-elevation model (DEM)(ICESat - DEM) are about 1.1 m but have standard deviations of 3 to 4 m. Differencing all ICESat repeats from the DEM shows that the overall elevation difference trend since 2003 is negative with losses of as much as 1.5 m/a from same season to same season (and similar elevation) data subsets. However, the mass balance assessments by traditional stake re-measurement methods suggest that the elevation changes where ICESat tracks 0046 and 0307 cross Drangajokull are not representative of the whole ice cap. Specifically, the area has experienced positive mass balance years during the time frame when ICESat data indicates substantial losses. This analysis suggests that ICESat-derived elevations may be used for multi-year change detection relative to other data but suggests that large uncertainties remain. These uncertainties may be due to geolocation uncertainty on steep slopes and continuing cloud cover that limits temporal and spatial coverage across the area

    Geology of Tindfjallajökull volcano, Iceland

    Get PDF
    The geology of Tindfjallajökull volcano, southern Iceland, is presented as a 1:50,000 scale map. Field mapping was carried out with a focus on indicators of past environments. A broad stratocone of interbedded fragmental rocks and lavas was constructed during Tindfjallajökull’s early development. This stratocone has been dissected by glacial erosion and overlain by a variety of mafic to silicic volcanic landforms. Eruption of silicic magma, which probably occurred subglacially, constructed a thick pile of breccia and lava lobes in the summit area. Mafic to intermediate flank eruptions continued through to the end of the last glacial period, producing lavas, hyaloclastite-dominated units and tuyas that preserve evidence of volcano-ice interactions. The Thórsmörk Ignimbrite, a regionally important chronostratigraphic marker, is present on the SE flank of the volcano. The geological mapping of Tindfjallajökull gives insights into the evolution of stratovolcanoes in glaciated regions and the influence of ice in their development

    Transition from inspiral to plunge for eccentric equatorial Kerr orbits

    Get PDF
    Ori and Thorne have discussed the duration and observability (with LISA) of the transition from circular, equatorial inspiral to plunge for stellar-mass objects into supermassive (105108M10^{5}-10^{8}M_{\odot}) Kerr black holes. We extend their computation to eccentric Kerr equatorial orbits. Even with orbital parameters near-exactly determined, we find that there is no universal length for the transition; rather, the length of the transition depends sensitively -- essentially randomly -- on initial conditions. Still, Ori and Thorne's zero-eccentricity results are essentially an upper bound on the length of eccentric transitions involving similar bodies (e.g., aa fixed). Hence the implications for observations are no better: if the massive body is M=106MM=10^{6}M_{\odot}, the captured body has mass mm, and the process occurs at distance dd from LISA, then S/N(m/10M)(1Gpc/d)×O(1)S/N \lesssim (m/10 M_{\odot})(1\text{Gpc}/d)\times O(1), with the precise constant depending on the black hole spin. For low-mass bodies (m7Mm \lesssim 7 M_\odot) for which the event rate is at least vaguely understood, we expect little chance (probably [much] less than 10%, depending strongly on the astrophysical assumptions) of LISA detecting a transition event with S/N>5S/N>5 during its run; however, even a small infusion of higher-mass bodies or a slight improvement in LISA's noise curve could potentially produce S/N>5S/N>5 transition events during LISA's lifetime.Comment: Submitted to PR
    corecore