236 research outputs found

    Displacement Based Design of Retaining Walls

    Get PDF
    A relatively simple rigid plastic model to study deformation behavior of rigid retaining wall is outlined. Both sliding and tilting modes of deformation are included. The study clearly reveals that wall movement caused by tilting can be substantial. But for high values of foundation soil friction angle, the tilting component of deformation can be omitted. Since the wall movement is affected by the characteristics (strength and frequency) of the excitation history, a number of excitation histories should be considered in retaining wall designs

    Exact ground state and kink-like excitations of a two dimensional Heisenberg antiferromagnet

    Full text link
    A rare example of a two dimensional Heisenberg model with an exact dimerized ground state is presented. This model, which can be regarded as a variation on the kagome lattice, has several features of interest: it has a highly (but not macroscopically) degenerate ground state; it is closely related to spin chains studied by earlier authors; in particular, it is probably the first genuinely two-dimensional quantum system to exhibit domain-wall-like ``kink'' excitations normally found only in one-dimensional systems. In some limits it decouples into non-interacting chains, purely dynamically and not because of weakening of interchain couplings: indeed, paradoxically, this happens in the limit of strong coupling of the chains.Comment: 4 pages, revtex, 5 figures included via epsfi

    Ordering of the pyrochlore Ising model with the long-range RKKY interaction

    Full text link
    The ordering of the Ising model on a pyrochlore lattice interacting via the long-range RKKY interaction, which models a metallic pyrochlore magnet such as Pr_2Ir_2O_7, is studied by Monte Carlo simulations. Depending on the parameter k_F representing the Fermi wavevector, the model exhibits rich ordering behaviors

    Low Temperature Spin Freezing in Dy2Ti2O7 Spin Ice

    Get PDF
    We report a study of the low temperature bulk magnetic properties of the spin ice compound Dy2Ti2O7 with particular attention to the (T < 4 K) spin freezing transition. While this transition is superficially similar to that in a spin glass, there are important qualitative differences from spin glass behavior: the freezing temperature increases slightly with applied magnetic field, and the distribution of spin relaxation times remains extremely narrow down to the lowest temperatures. Furthermore, the characteristic spin relaxation time increases faster than exponentially down to the lowest temperatures studied. These results indicate that spin-freezing in spin ice materials represents a novel form of magnetic glassiness associated with the unusual nature of geometrical frustration in these materials.Comment: 24 pages, 8 figure

    Systematic review of prediction models in relapsing remitting multiple sclerosis

    Get PDF
    The natural history of relapsing remitting multiple sclerosis (RRMS) is variable and prediction of individual prognosis challenging. The inability to reliably predict prognosis at diagnosis has important implications for informed decision making especially in relation to disease modifying therapies. We conducted a systematic review in order to collate, describe and assess the methodological quality of published prediction models in RRMS. We searched Medline, Embase and Web of Science. Two reviewers independently screened abstracts and full text for eligibility and assessed risk of bias. Studies reporting development or validation of prediction models for RRMS in adults were included. Data collection was guided by the checklist for critical appraisal and data extraction for systematic reviews (CHARMS) and applicability and methodological quality assessment by the prediction model risk of bias assessment tool (PROBAST). 30 studies were included in the review. Applicability was assessed as high risk of concern in 27 studies. Risk of bias was assessed as high for all studies. The single most frequently included predictor was baseline EDSS (n = 11). T2 Lesion volume or number and brain atrophy were each retained in seven studies. Five studies included external validation and none included impact analysis. Although a number of prediction models for RRMS have been reported, most are at high risk of bias and lack external validation and impact analysis, restricting their application to routine clinical practice

    Spin Driven Jahn-Teller Distortion in a Pyrochlore system

    Full text link
    The ground-state properties of the spin-1 antiferromagnetic Heisenberg model on the corner-sharing tetrahedra, pyrochlore lattice, is investigated. By breaking up each spin into a pair of 1/2-spins, the problem is reduced to the equivalent one of the spin-1/2 tetrahedral network in analogy with the valence bond solid state in one dimension. The twofold degeneracy of the spin-singlets of a tetrahedron is lifted by a Jahn-Teller mechanism, leading to a cubic to tetragonal structural transition. It is proposed that the present mechanism is responsible for the phase transition observed in the spin-1 spinel compounds ZnV2_2O4_4 and MgV2_2O4_4.Comment: 4 pages, 3 eps figures, REVTeX, to appear in Phys. Rev. Let

    Could an Impairment in Local Translation of mRNAs in Glia be Contributing to Pathogenesis in ALS?

    Get PDF
    One of the key pathways implicated in amyotrophic lateral sclerosis (ALS) pathogenesis is abnormal RNA processing. Studies to date have focussed on defects in RNA stability, splicing, and translation, but this review article will focus on the largely overlooked RNA processing mechanism of RNA trafficking, with particular emphasis on the importance of glia. In the central nervous system (CNS), oligodendrocytes can extend processes to myelinate and metabolically support up to 50 axons and astrocytes can extend processes to cover up to 100,000 synapses, all with differing local functional requirements. Furthermore, many of the proteins required in these processes are large, aggregation-prone proteins which would be difficult to transport in their fully translated, terminally-folded state. This, therefore, highlights a critical requirement in these cells for local control of protein translation, which is achieved through specific trafficking of mRNAs to each process and local translation therein. Given that a large number of RNA-binding proteins have been implicated in ALS, and RNA-binding proteins are essential for trafficking mRNAs from the nucleus to glial processes for local translation, RNA misprocessing in glial cells is a likely source of cellular dysfunction in ALS. To date, neurons have been the focus of ALS research, but an intrinsic deficit in glia, namely astrocytes and oligodendrocytes, could have an additive effect on declining neuronal function in ALS. This review article aims to highlight the key evidence that supports the contention that RNA trafficking deficits in astrocytes and oligodendrocytes may contribute to in ALS

    Non-regular eigenstate of the XXX model as some limit of the Bethe state

    Full text link
    For the one-dimensional XXX model under the periodic boundary conditions, we discuss two types of eigenvectors, regular eigenvectors which have finite-valued rapidities satisfying the Bethe ansatz equations, and non-regular eigenvectors which are descendants of some regular eigenvectors under the action of the SU(2) spin-lowering operator. It was pointed out by many authors that the non-regular eigenvectors should correspond to the Bethe ansatz wavefunctions which have multiple infinite rapidities. However, it has not been explicitly shown whether such a delicate limiting procedure should be possible. In this paper, we discuss it explicitly in the level of wavefunctions: we prove that any non-regular eigenvector of the XXX model is derived from the Bethe ansatz wavefunctions through some limit of infinite rapidities. We formulate the regularization also in terms of the algebraic Bethe ansatz method. As an application of infinite rapidity, we discuss the period of the spectral flow under the twisted periodic boundary conditions.Comment: 53 pages, no figur

    Sigma-2: Multiple sequence alignment of non-coding DNA via an evolutionary model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While most multiple sequence alignment programs expect that all or most of their input is known to be homologous, and penalise insertions and deletions, this is not a reasonable assumption for non-coding DNA, which is much less strongly conserved than protein-coding genes. Arguing that the goal of sequence alignment should be the detection of <it>homology </it>and not <it>similarity</it>, we incorporate an evolutionary model into a previously published multiple sequence alignment program for non-coding DNA, Sigma, as a sensitive likelihood-based way to assess the significance of alignments. Version 1 of Sigma was successful in eliminating spurious alignments but exhibited relatively poor sensitivity on synthetic data. Sigma 1 used a <it>p</it>-value (the probability under the "null hypothesis" of non-homology) to assess the significance of alignments, and, optionally, a background model that captured short-range genomic correlations. Sigma version 2, described here, retains these features, but calculates the <it>p</it>-value using a sophisticated evolutionary model that we describe here, and also allows for a transition matrix for different substitution rates from and to different nucleotides. Our evolutionary model takes separate account of mutation and fixation, and can be extended to allow for locally differing functional constraints on sequence.</p> <p>Results</p> <p>We demonstrate that, on real and synthetic data, Sigma-2 significantly outperforms other programs in specificity to genuine homology (that is, it minimises alignment of spuriously similar regions that do not have a common ancestry) while it is now as sensitive as the best current programs.</p> <p>Conclusions</p> <p>Comparing these results with an extrapolation of the best results from other available programs, we suggest that conservation rates in intergenic DNA are often significantly over-estimated. It is increasingly important to align non-coding DNA correctly, in regulatory genomics and in the context of whole-genome alignment, and Sigma-2 is an important step in that direction.</p
    corecore