89 research outputs found

    An economic evaluation of neonatal screening for inborn errors of metabolism using tandem mass spectrometry in Thailand

    Full text link
    © 2015 Thiboonboon et al. Background: Inborn errors of metabolism (IEM) are a rare group of genetic diseases which can lead to several serious long-term complications in newborns. In order to address these issues as early as possible, a process called tandem mass spectrometry (MS/MS) can be used as it allows for rapid and simultaneous detection of the diseases. This analysis was performed to determine whether newborn screening by MS/MS is cost-effective in Thailand. Method: A cost-utility analysis comprising a decision-tree and Markov model was used to estimate the cost in Thai baht (THB) and health outcomes in life-years (LYs) and quality-adjusted life year (QALYs) presented as an incremental cost-effectiveness ratio (ICER). The results were also adjusted to international dollars (I)usingpurchasingpowerparities(PPP)(1I) using purchasing power parities (PPP) (1 I = 17.79 THB for the year 2013). The comparisons were between 1) an expanded neonatal screening programme using MS/MS screening for six prioritised diseases: phenylketonuria (PKU); isovaleric acidemia (IVA); methylmalonic acidemia (MMA); propionic acidemia (PA); maple syrup urine disease (MSUD); and multiple carboxylase deficiency (MCD); and 2) the current practice that is existing PKU screening. A comparison of the outcome and cost of treatment before and after clinical presentations were also analysed to illustrate the potential benefit of early treatment for affected children. A budget impact analysis was conducted to illustrate the cost of implementing the programme for 10 years. Results: The ICER of neonatal screening using MS/MS amounted to 1,043,331 THB per QALY gained (58,647 IperQALYgained).ThepotentialbenefitsofearlydetectioncomparedwithlatedetectionyieldedsignificantresultsforPKU,IVA,MSUD,andMCDpatients.Thebudgetimpactanalysisindicatedthattheimplementationcostoftheprogrammewasexpectedatapproximately2,700millionTHB(152millionI per QALY gained). The potential benefits of early detection compared with late detection yielded significant results for PKU, IVA, MSUD, and MCD patients. The budget impact analysis indicated that the implementation cost of the programme was expected at approximately 2,700 million THB (152 million I) over 10 years. Conclusion: At the current ceiling threshold, neonatal screening using MS/MS in the Thai context is not cost-effective. However, the treatment of patients who were detected early for PKU, IVA, MSUD, and MCD, are considered favourable. The budget impact analysis suggests that the implementation of the programme will incur considerable expenses under limited resources. A long-term epidemiological study on the incidence of IEM in Thailand is strongly recommended to ascertain the magnitude of problem. Copyright

    Human papillomavirus DNA in plasma of patients with cervical cancer

    Get PDF
    BACKGROUND: Human papillomavirus (HPV) is a crucial etiological factor for cervical cancer (CC) development. From a diagnostic view-point, the consistent presence of HPV in CC allows the viral DNA to be used as a genetic marker. The aims of this study were to evaluate the presence, physical status and clinical significant of HPV DNA in circulation of CC patients. RESULTS: Whereas 6 out of 50 (12%) HPV positive CC patients revealed plasma HPV DNA, it was detected in none of 20 normal controls or 13 HPV negative CC cases. The plasma DNA exhibited an HPV type identical to the HPV in the primary tumors and the DNA from both sources was integrated into host genome. Interestingly, several findings suggested an association between plasma HPV DNA and metastasis. First, three of the HPV DNA positive cases were CC patients with clinical stage IVB or recurrence with distance metastases (P = 0.001, RR = 15.67). Second, the amount of plasma HPV DNA from metastatic patients to be three times more than three other patients without metastases. Finally, the later cases had tendency to develop recurrence distant metastases within one year after complete treatment when compared with other HPV associated CC patients with the same stage but without the present of plasma HPV DNA. CONCLUSIONS: The plasma HPV DNA originated from the CC, was associated with metastasis and could be used as a marker representing the circulating free CC DNA

    Genetic, environmental and stochastic factors in monozygotic twin discordance with a focus on epigenetic differences

    Get PDF
    PMCID: PMC3566971This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Meta-analysis of two Chinese populations identifies an autoimmune disease risk allele in 22q11.21 as associated with systemic lupus erythematosus

    Get PDF
    INTRODUCTION: Systemic lupus erythematosus (SLE) is a heterogeneous disease with a diverse spectrum of clinical symptoms from skin rash to end-organ damage. 22q11.21 has been identified as a susceptibility region for several autoimmune diseases, including SLE. However, the detailed information for SLE association and the underlying functional mechanism(s) are still lacking. METHODS: Through meta-analysis of two genome-wide association studies (GWAS) on Chinese Han populations with a total of 1659 cases and 3398 controls matched geographically, we closely examined this region, especially on the reported single nucleotide polymorphisms (SNPs) associated with different autoimmune diseases and their relationships. We further replicated the most significant association SNP with SLE using 2612 cases and 2323 controls of Asian ancestry. RESULTS: All reported SNPs in this region with different autoimmune diseases were examined in the two GWAS data and meta- analysis result, and supportive evidence of association with SLE was found (meta-analysis P_meta ≤ 7.27E-05), which might require further investigation. SNP rs2298428 was identified as the most significant SNP associated with SLE in this region (P_meta = 2.70E-09). It showed independent effect through both stepwise and conditional logistic regression, and there is no evidence of other independent association signals for SLE in this region. The association of rs2298428 was further replicated in three cohorts from Hong Kong, Anhui and Thailand with a total of 2612 cases and 2323 controls (joint analysis of GWAS and replication result P_all = 1.31E-11, OR = 1.23). SNP rs2298428 was shown to be an eQTL for UBE2L3 gene in different cell types, with the risk allele (T) being correlated with higher expression of UBE2L3. This is consistent with earlier reports on higher expression of UBE2L3 in SLE cases. CONCLUSIONS: Association to distinct autoimmune diseases highlights the significance of this region in autoreactive responses and potentially shared functional mechanisms by these diseases.published_or_final_versio

    Gene-Based Meta-Analysis of Genome-Wide Association Study Data Identifies Independent Single-Nucleotide Polymorphisms in ANXA6 as Being Associated With Systemic Lupus Erythematosus in Asian Populations

    Get PDF
    Objective Previous genome-wide association studies (GWAS), which were mainly based on single-variant analysis, have identified many systemic lupus erythematosus (SLE) susceptibility loci. However, the genetic architecture of this complex disease is far from being understood. The aim of this study was to investigate whether using a gene-based analysis may help to identify novel loci, by considering global evidence of association from a gene or a genomic region rather than focusing on evidence for individual variants. Methods Based on the results of a meta-analysis of 2 GWAS of SLE conducted in 2 Asian cohorts, we performed an in-depth gene-based analysis followed by replication in a total of 4,626 patients and 7,466 control subjects of Asian ancestry. Differential allelic expression was measured by pyrosequencing. Results More than one-half of the reported SLE susceptibility loci showed evidence of independent effects, and this finding is important for understanding the mechanisms of association and explaining disease heritability. ANXA6 was detected as a novel SLE susceptibility gene, with several single-nucleotide polymorphisms (SNPs) contributing independently to the association with disease. The risk allele of rs11960458 correlated significantly with increased expression of ANXA6 in peripheral blood mononuclear cells from heterozygous healthy control subjects. Several other associated SNPs may also regulate ANXA6 expression, according to data obtained from public databases. Higher expression of ANXA6 in patients with SLE was also reported previously. Conclusion Our study demonstrated the merit of using gene-based analysis to identify novel susceptibility loci, especially those with independent effects, and also demonstrated the widespread presence of loci with independent effects in SLE susceptibility genes. © 2015, American College of Rheumatology.postprin

    Bi-allelic <em>ACBD6</em> variants lead to a neurodevelopmental syndrome with progressive and complex movement disorders

    Get PDF
    \ua9 The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain. The acyl-CoA-binding domain-containing protein 6 (ACBD6) is ubiquitously expressed, plays a role in the acylation of lipids and proteins and regulates the N-myristoylation of proteins via N-myristoyltransferase enzymes (NMTs). However, its precise function in cells is still unclear, as is the consequence of ACBD6 defects on human pathophysiology. Using exome sequencing and extensive international data sharing efforts, we identified 45 affected individuals from 28 unrelated families (consanguinity 93%) with bi-allelic pathogenic, predominantly loss-of-function (18/20) variants in ACBD6. We generated zebrafish and Xenopus tropicalis acbd6 knockouts by CRISPR/Cas9 and characterized the role of ACBD6 on protein N-myristoylation with myristic acid alkyne (YnMyr) chemical proteomics in the model organisms and human cells, with the latter also being subjected further to ACBD6 peroxisomal localization studies. The affected individuals (23 males and 22 females), aged 1-50 years, typically present with a complex and progressive disease involving moderate-to-severe global developmental delay/intellectual disability (100%) with significant expressive language impairment (98%), movement disorders (97%), facial dysmorphism (95%) and mild cerebellar ataxia (85%) associated with gait impairment (94%), limb spasticity/hypertonia (76%), oculomotor (71%) and behavioural abnormalities (65%), overweight (59%), microcephaly (39%) and epilepsy (33%). The most conspicuous and common movement disorder was dystonia (94%), frequently leading to early-onset progressive postural deformities (97%), limb dystonia (55%) and cervical dystonia (31%). A jerky tremor in the upper limbs (63%), a mild head tremor (59%), parkinsonism/hypokinesia developing with advancing age (32%) and simple motor and vocal tics were among other frequent movement disorders. Midline brain malformations including corpus callosum abnormalities (70%), hypoplasia/agenesis of the anterior commissure (66%), short midbrain and small inferior cerebellar vermis (38% each) as well as hypertrophy of the clava (24%) were common neuroimaging findings. Acbd6-deficient zebrafish and Xenopus models effectively recapitulated many clinical phenotypes reported in patients including movement disorders, progressive neuromotor impairment, seizures, microcephaly, craniofacial dysmorphism and midbrain defects accompanied by developmental delay with increased mortality over time. Unlike ACBD5, ACBD6 did not show a peroxisomal localization and ACBD6-deficiency was not associated with altered peroxisomal parameters in patient fibroblasts. Significant differences in YnMyr-labelling were observed for 68 co- and 18 post-translationally N-myristoylated proteins in patient-derived fibroblasts. N-myristoylation was similarly affected in acbd6-deficient zebrafish and X. tropicalis models, including Fus, Marcks and Chchd-related proteins implicated in neurological diseases. The present study provides evidence that bi-allelic pathogenic variants in ACBD6 lead to a distinct neurodevelopmental syndrome accompanied by complex and progressive cognitive and movement disorders

    Bi-allelic ACBD6 variants lead to a neurodevelopmental syndrome with progressive and complex movement disorders

    Get PDF
    The acyl-CoA-binding domain-containing protein 6 (ACBD6) is ubiquitously expressed, plays a role in the acylation of lipids and proteins, and regulates the N-myristoylation of proteins via N-myristoyltransferase enzymes (NMTs). However, its precise function in cells is still unclear, as is the consequence of ACBD6 defects on human pathophysiology. Utilizing exome sequencing and extensive international data sharing efforts, we identified 45 affected individuals from 28 unrelated families (consanguinity 93%) with bi-allelic pathogenic, predominantly loss-of-function (18/20) variants in ACBD6. We generated zebrafish and Xenopus tropicalis acbd6 knockouts by CRISPR/Cas9 and characterized the role of ACBD6 on protein N-myristoylation with YnMyr chemical proteomics in the model organisms and human cells, with the latter also being subjected further to ACBD6 peroxisomal localization studies. The affected individuals (23 males and 22 females), with ages ranging from 1 to 50 years old, typically present with a complex and progressive disease involving moderate-to-severe global developmental delay/intellectual disability (100%) with significant expressive language impairment (98%), movement disorders (97%), facial dysmorphism (95%), and mild cerebellar ataxia (85%) associated with gait impairment (94%), limb spasticity/hypertonia (76%), oculomotor (71%) and behavioural abnormalities (65%), overweight (59%), microcephaly (39%) and epilepsy (33%). The most conspicuous and common movement disorder was dystonia (94%), frequently leading to early-onset progressive postural deformities (97%), limb dystonia (55%), and cervical dystonia (31%). A jerky tremor in the upper limbs (63%), a mild head tremor (59%), parkinsonism/hypokinesia developing with advancing age (32%), and simple motor and vocal tics were among other frequent movement disorders. Midline brain malformations including corpus callosum abnormalities (70%), hypoplasia/agenesis of the anterior commissure (66%), short midbrain and small inferior cerebellar vermis (38% each), as well as hypertrophy of the clava (24%) were common neuroimaging findings. acbd6-deficient zebrafish and Xenopus models effectively recapitulated many clinical phenotypes reported in patients including movement disorders, progressive neuromotor impairment, seizures, microcephaly, craniofacial dysmorphism, and midbrain defects accompanied by developmental delay with increased mortality over time. Unlike ACBD5, ACBD6 did not show a peroxisomal localisation and ACBD6-deficiency was not associated with altered peroxisomal parameters in patient fibroblasts. Significant differences in YnMyr-labelling were observed for 68 co- and 18 post-translationally N-myristoylated proteins in patient-derived fibroblasts. N-Myristoylation was similarly affected in acbd6-deficient zebrafish and Xenopus tropicalis models, including Fus, Marcks, and Chchd-related proteins implicated in neurological diseases. The present study provides evidence that bi-allelic pathogenic variants in ACBD6 lead to a distinct neurodevelopmental syndrome accompanied by complex and progressive cognitive and movement disorders
    corecore