72 research outputs found

    Cimetidine increases survival of colorectal cancer patients with high levels of sialyl Lewis-X and sialyl Lewis-A epitope expression on tumour cells

    Get PDF
    Cimetidine has been shown to have beneficial effects in colorectal cancer patients. In this study, a total of 64 colorectal cancer patients who received curative operation were examined for the effects of cimetidine treatment on survival and recurrence. The cimetidine group was given 800 mg day−1 of cimetidine orally together with 200 mg day−1 of 5-fluorouracil, while the control group received 5-fluorouracil alone. The treatment was initiated 2 weeks after the operation and terminated after 1 year. Robust beneficial effects of cimetidine were noted: the 10-year survival rate of the cimetidine group was 84.6% whereas that of control group was 49.8% (P<0.0001). According to our previous observations that cimetidine blocked the expression of E-selectin on vascular endothelium and inhibited the adhesion of cancer cells to the endothelium, we have further stratified the patients according to the expression levels of sialyl Lewis antigens X (sLx) and A (sLa). We found that cimetidine treatment was particularly effective in patients whose tumour had higher sLx and sLa antigen levels. For example, the 10-year cumulative survival rate of the cimetidine group with higher CSLEX staining, recognizing sLx, of tumours was 95.5%, whereas that of control group was 35.1% (P=0.0001). In contrast, in the group of patients with no or low levels CSLEX staining, cimetidine did not show significant beneficial effect (the 10-year survival rate of the cimetidine group was 70.0% and that of control group was 85.7% (P=n.s.)). These results clearly indicate that cimetidine treatment dramatically improved survival in colorectal cancer patients with tumour cells expressing high levels of sLx and sLa

    Neo-Newtonian cosmology: An intermediate step towards General Relativity

    Full text link
    Cosmology is a field of physics in which the use of General Relativity theory is indispensable. However, a cosmology based on Newtonian gravity theory for gravity is possible in certain circumstances. The applicability of Newtonian theory can be substantially extended if it is modified in such way that pressure has a more active role as source of the gravitational field. This was done in the neo-Newtonian cosmology. The limitation on the construction of a Newtonian cosmology, and the need for a relativistic theory in cosmology are reviewed. The neo-Newtonian proposal is presented, and its consequences for cosmology are discussed.Comment: 10 pages. Portuguese version submitted to RBE

    Parvovirus Minute Virus of Mice Induces a DNA Damage Response That Facilitates Viral Replication

    Get PDF
    Infection by DNA viruses can elicit DNA damage responses (DDRs) in host cells. In some cases the DDR presents a block to viral replication that must be overcome, and in other cases the infecting agent exploits the DDR to facilitate replication. We find that low multiplicity infection with the autonomous parvovirus minute virus of mice (MVM) results in the activation of a DDR, characterized by the phosphorylation of H2AX, Nbs1, RPA32, Chk2 and p53. These proteins are recruited to MVM replication centers, where they co-localize with the main viral replication protein, NS1. The response is seen in both human and murine cell lines following infection with either the MVMp or MVMi strains. Replication of the virus is required for DNA damage signaling. Damage response proteins, including the ATM kinase, accumulate in viral-induced replication centers. Using mutant cell lines and specific kinase inhibitors, we show that ATM is the main transducer of the signaling events in the normal murine host. ATM inhibitors restrict MVM replication and ameliorate virus-induced cell cycle arrest, suggesting that DNA damage signaling facilitates virus replication, perhaps in part by promoting cell cycle arrest. Thus it appears that MVM exploits the cellular DNA damage response machinery early in infection to enhance its replication in host cells

    Noise Cancellation: Viral Fine Tuning of the Cellular Environment for Its Own Genome Replication

    Get PDF
    Productive replication of DNA viruses elicits host cell DNA damage responses, which cause both beneficial and detrimental effects on viral replication. In response to the viral productive replication, host cells attempt to attenuate the S-phase cyclin-dependent kinase (CDK) activities to inhibit viral replication. However, accumulating evidence regarding interactions between viral factors and cellular signaling molecules indicate that viruses utilize them and selectively block the downstream signaling pathways that lead to attenuation of the high S-phase CDK activities required for viral replication. In this review, we describe the sophisticated strategy of Epstein-Barr virus to cancel such “noisy” host defense signals in order to hijack the cellular environment
    corecore