2,220 research outputs found

    Quantum Corrals, Eigenmodes and Quantum Mirages in s-wave Superconductors

    Full text link
    We study the electronic structure of magnetic and non-magnetic quantum corrals embedded in s-wave superconductors. We demonstrate that a quantum mirage of an impurity bound state peak can be projected from the occupied into the empty focus of a non-magnetic quantum corral via the excitation of the corral's eigenmodes. We observe an enhanced coupling between magnetic impurities inside the corral, which can be varied through oscillations in the corral's impurity potential. Finally, we discuss the form of eigenmodes in magnetic quantum corrals.Comment: 4 pages, 4 figure

    Theoretical study of a localized quantum spin reversal by the sequential injection of spins in a spin quantum dot

    Full text link
    This is a theoretical study of the reversal of a localized quantum spin induced by sequential injection of spins for a spin quantum dot that has a quantum spin. The system consists of ``electrode/quantum well(QW)/dot/QW/electrode" junctions, in which the left QW has an energy level of conduction electrons with only up-spin. We consider a situation in which up-spin electrons are sequentially injected from the left electrode into the dot through the QW and an exchange interaction acts between the electrons and the localized spin. To describe the sequentially injected electrons, we propose a simple method based on approximate solutions from the time-dependent Schro¨\ddot{\rm o}dinger equation. Using this method, it is shown that the spin reversal occurs when the right QW has energy levels of conduction electrons with only down-spin. In particular, the expression of the reversal time of a localized spin is derived and the upper and lower limits of the time are clearly expressed. This expression is expected to be useful for a rough estimation of the minimum relaxation time of the localized spin to achieve the reversal. We also obtain analytic expressions for the expectation value of the localized spin and the electrical current as a function of time. In addition, we found that a system with the non-magnetic right QW exhibits spin reversal or non-reversal depending on the exchange interaction.Comment: 12 pages, 12 figures, to be published in Phys. Rev. B, typos correcte

    spl(2,1) dynamical supersymmetry and suppression of ferromagnetism in flat band double-exchange models

    Full text link
    The low energy spectrum of the ferromagnetic Kondo lattice model on a N-site complete graph extended with on-site repulsion is obtained from the underlying spl(2,1) algebra properties in the strong coupling limit. The ferromagnetic ground state is realized for 1 and N+1 electrons only. We identify the large density of states to be responsible for the suppression of the ferromagnetic state and argue that a similar situation is encountered in the Kagome, pyrochlore, and other lattices with flat bands in their one-particle density of states.Comment: 7 pages, 1 figur

    Spin dynamics of a one-dimensional spin-1/2 fully anisotropic Ising-like antiferromagnet in a transverse magnetic field

    Full text link
    We consider the one-dimensional Ising-like fully anisotropic S=1/2 Heisenberg antiferromagnetic Hamiltonian and study the dynamics of domain wall excitations in the presence of transverse magnetic field hxh_x. We obtain dynamical spin correlation functions along the magnetic field Sxx(q,ω)S^{xx}(q,\omega) and perpendicular to it Syy(q,ω)S^{yy}(q,\omega). It is shown that the line shapes of Sxx(q,ω)S^{xx}(q,\omega) and Syy(q,ω)S^{yy}(q,\omega) are purely symmetric at the zone-boundary. It is observed in Syy(q,ω)S^{yy}(q,\omega) for π/2<q<π\pi/2<q<\pi that the spectral weight moves toward low energy side with the increase of hxh_x. This model is applicable to study the spin dynamics of CsCoCl3_3 in the presence of weak interchain interactions.Comment: 19 pages, LaTeX, 12 eps figure

    Susceptibility of the one-dimensional, dimerized Hubbard model

    Full text link
    We show that the zero temperature susceptibility of the one-dimensional, dimerized Hubbard model at quarter-filling can be accurately determined on the basis of exact diagonalization of small clusters. The best procedure is to perform a finite-size scaling of the spin velocity uσu_\sigma, and to calculate the susceptibility from the Luttinger liquid relation χ=2/πuσ\chi=2/\pi u_\sigma. We show that these results are reliable by comparing them with the analytical results that can be obtained in the weak and strong coupling limits. We have also used quantum Monte Carlo simulations to calculate the temperature dependence of the susceptibility for parameters that should be relevant to the Bechgaard salts. This shows that, used together, these numerical techniques are able to give precise estimates of the low temperature susceptibility of realistic one-dimensional models of correlated electrons.Comment: 10 pages, latex, figures available from the authors. To appear in Phys. Rev. B, Rapid Comm

    Phase Diagram of Lattice-Spin System RbCoBr3_3

    Full text link
    We study the lattice-spin model of RbCoBr3_3 which is proposed by Shirahata and Nakamura, by mean field approximation. This model is an Ising spin system on a distorted triangular lattice. There are two kinds of frustrated variables, that is, the lattice and spin. We obtain a phase diagram of which phase boundary is drawn continuously in a whole region. Intermediate phases that include a partial disordered state appear. The model has the first-order phase transitions in addition to the second-order phase transitions. We find a three-sublattice ferrimagnetic state in the phase diagram. The three-sublattice ferrimagnetic state does not appear when the lattice is not distorted.Comment: 5 pages, 4 figures, jpsj2.cls, to be published in J. Phys. Soc. Jpn. Vol.75 (2006) No.

    Pairbreaking Without Magnetic Impurities in Disordered Superconductors

    Get PDF
    We study analytically the effects of inhomogeneous pairing interactions in short coherence length superconductors, using a spatially varying Bogoliubov-deGennes model. Within the Born approximation, it reproduces all of the standard Abrikosov-Gor'kov pairbreaking and gaplessness effects, even in the absence of actual magnetic impurities. For pairing disorder on a single site, the T-matrix gives rise to bound states within the BCS gap. Our results are compared with recent scanning tunneling microscopy measurements on Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} with Zn or Ni impurities.Comment: 4 pages, 2 figures, submitted to PR
    corecore