72 research outputs found

    Actin-binding rho activating protein (Abra) is essential for fluid shear stress-induced arteriogenesis

    Get PDF
    OBJECTIVE: Arteriogenesis, the development of a collateral circulation, is important for tissue survival but remains functionally defective because of early normalization of fluid shear stress (FSS). Using a surgical model of chronically elevated FSS we showed that rabbits exhibited normal blood flow reserve after femoral artery ligature (FAL). Inhibition of the Rho pathway by Fasudil completely blocked the beneficial effect of FSS. In a genome-wide gene profiling we identified actin-binding Rho activating protein (Abra), which was highly upregulated in growing collaterals. METHODS AND RESULTS: qRT-PCR and Western blot confirmed highly increased FSS-dependent expression of Abra in growing collaterals. NO blockage by L-NAME abolished FSS-generated Abra expression as well as the whole arteriogenic process. Cell culture studies demonstrated an Abra-triggered proliferation of smooth muscle cells through a mechanism that requires Rho signaling. Local intracollateral adenoviral overexpression of Abra improved collateral conductance by 60% in rabbits compared to the natural response after FAL. In contrast, targeted deletion of Abra in CL57BL/6 mice led to impaired arteriogenesis. CONCLUSIONS: FSS-induced Abra expression during arteriogenesis is triggered by NO and leads to stimulation of collateral growth by smooth muscle cell proliferation

    Cyclin-Dependent Kinase Activity Controls the Onset of the HCMV Lytic Cycle

    Get PDF
    The onset of human cytomegalovirus (HCMV) lytic infection is strictly synchronized with the host cell cycle. Infected G0/G1 cells support viral immediate early (IE) gene expression and proceed to the G1/S boundary where they finally arrest. In contrast, S/G2 cells can be infected but effectively block IE gene expression and this inhibition is not relieved until host cells have divided and reentered G1. During latent infection IE gene expression is also inhibited, and for reactivation to occur this block to IE gene expression must be overcome. It is only poorly understood which viral and/or cellular activities maintain the block to cell cycle or latency-associated viral IE gene repression and whether the two mechanisms may be linked. Here, we show that the block to IE gene expression during S and G2 phase can be overcome by both genotoxic stress and chemical inhibitors of cellular DNA replication, pointing to the involvement of checkpoint-dependent signaling pathways in controlling IE gene repression. Checkpoint-dependent rescue of IE expression strictly requires p53 and in the absence of checkpoint activation is mimicked by proteasomal inhibition in a p53 dependent manner. Requirement for the cyclin dependent kinase (CDK) inhibitor p21 downstream of p53 suggests a pivotal role for CDKs in controlling IE gene repression in S/G2 and treatment of S/G2 cells with the CDK inhibitor roscovitine alleviates IE repression independently of p53. Importantly, CDK inhibiton also overcomes the block to IE expression during quiescent infection of NTera2 (NT2) cells. Thus, a timely block to CDK activity not only secures phase specificity of the cell cycle dependent HCMV IE gene expression program, but in addition plays a hitherto unrecognized role in preventing the establishment of a latent-like state

    Assigning a function to a conserved archaeal metallo-β-lactamase from Haloferax volcanii

    Get PDF
    The metallo-β-lactamase family of enzymes comprises a large group of proteins with diverse functions in the metabolism of the cell. Among others, this superfamily contains proteins which are involved in DNA and RNA metabolism, acting as nucleases in e.g. repair and maturation. Many proteins have been annotated in prokaryotic genomes as being potential metallo-β-lactamases, but very often the function has not been proven. The protein HVO_2763 from Haloferax volcanii is such a potential metallo-β-lactamase. HVO_2763 has sequence similarity to the metallo-β-lactamase tRNase Z, a tRNA 3′ processing endonuclease. Here, we report the characterisation of this metallo-β-lactamase HVO_2763 in the halophilic archaeon Haloferax volcanii. Using different in vitro assays with the recombinant HVO_2763, we could show that the protein does not have tRNA 3′ processing or exonuclease activity. According to transcriptome analyses of the HVO_2763 deletion strain, expression of proteins involved in membrane transport is downregulated in the mutant. Therefore, HVO_2763 might be involved directly or indirectly in membrane transport

    Genome-Wide Screen of Three Herpesviruses for Protein Subcellular Localization and Alteration of PML Nuclear Bodies

    Get PDF
    Herpesviruses are large, ubiquitous DNA viruses with complex host interactions, yet many of the proteins encoded by these viruses have not been functionally characterized. As a first step in functional characterization, we determined the subcellular localization of 234 epitope-tagged proteins from herpes simplex virus, cytomegalovirus, and Epstein–Barr virus. Twenty-four of the 93 proteins with nuclear localization formed subnuclear structures. Twelve of these localized to the nucleolus, and five at least partially localized with promyelocytic leukemia (PML) bodies, which are known to suppress viral lytic infection. In addition, two proteins disrupted Cajal bodies, and 19 of the nuclear proteins significantly decreased the number of PML bodies per cell, including six that were shown to be SUMO-modified. These results have provided the first functional insights into over 120 previously unstudied proteins and suggest that herpesviruses employ multiple strategies for manipulating nuclear bodies that control key cellular processes

    Thermal stability of Al-O-N PVD diffusion barriers

    No full text

    Stickoxid als Stimulator für die TRPV-4-Expression in Kollateralgefäßen bei der Arteriogenese

    No full text

    Inferior Mesenteric Artery Side Branch for Selected Patients with Endovascular Aortic Aneurysm Repair

    Get PDF
    : Objective/Background: To report on our experience of the treatment of aortic aneurysms by custom-made, branched stent-grafts with an additional inferior mesenteric artery (IMA) side branch to preserve IMA perfusion in patients at risk for colon ischemia. Methods: Three male patients (mean age 60 years) with a thoracoabdominal, pararenal, and infrarenal aortic aneurysm (AA), respectively, were treated by endovascular aneurysm exclusion using custom-made, branched stent-grafts with a side branch to the IMA for prevention of colon ischemia. Indications for selective IMA side branch perfusion were occlusions or high-grade stenosis of the visceral or hypogastric arteries. Results: No colon ischemia and no neurological deficit were observed. All three IMA side branches were perfused and patent, as documented by computed tomography scan and duplex ultrasound postoperatively and after 12 months. Patency after 24 months was documented as 2/3. Conclusion: Custom-made, branched stent-grafts are an endovascular option to preserve the IMA perfusion in selected, electively treated patients with an increased risk for insufficient colon perfusion due to stenosis or occlusions of visceral or hypogastric arteries. Keywords: Branched stent-graft, Colon ischemia, Custom-made device, Endovascular aneurysm repair, Inferior mesenteric arter
    corecore