2,051 research outputs found
Exploring the role of X-ray reprocessing and irradiation in the anomalous bright optical outbursts of A0538-66
In 1981, the Be/X-ray binary (Be/XRB) A0538-66 showed outbursts characterized
by high peak luminosities in the X-ray and optical bands. The optical outbursts
were qualitatively explained as X-ray reprocessing in a gas cloud surrounding
the binary system. Since then, further important information about A0538-66
have been obtained, and sophisticated photoionization codes have been developed
to calculate the radiation emerging from a gas nebula illuminated by a central
X-ray source. In the light of the new information and tools available, we
studied again the enhanced optical emission displayed by A0538-66 to understand
the mechanisms responsible for these unique events among the class of Be/XRBs.
We performed about 10^5 simulations of a gas envelope photoionized by an X-ray
source. We assumed for the shape of the gas cloud either a sphere or a
circumstellar disc observed edge-on. We studied the effects of varying the main
properties of the envelope and the influence of different input X-ray spectra
on the optical/UV emission emerging from the photoionized cloud. We compared
the computed spectra with the IUE spectrum and photometric UBV measurements
obtained during the outburst of 29 April 1981. We also explored the role played
by the X-ray heating of the surface of the donor star irradiated by the X-ray
emission of the neutron star (NS). We found that reprocessing in a spherical
cloud with a shallow radial density distribution can reproduce the optical/UV
emission. To our knowledge, this configuration has never been observed either
in A0538-66 during other epochs or in other Be/XRBs. We found, contrary to the
case of most other Be/XRBs, that the optical/UV radiation produced by the X-ray
heating of the surface of the donor star irradiated by the NS is
non-negligible, due to the particular orbital parameters of this system that
bring the NS very close to its companion.Comment: Accepted for publication in Astronomy & Astrophysics. Abstract
abridged to meet arXiv requirement
Pulse phase and precession phase resolved spectroscopy of Her X-1: studying a representative Main-On with RXTE
We performed a detailed pulse phase resolved spectroscopy of the accreting
binary X-ray pulsar Her X-1 in the energy range 3.5-75 keV and have established
pulse phase profiles for all spectral parameters. For the centroid of the
cyclotron line, the photon index and the flux of the 6.4 keV iron line, we have
studied the variation as a function of 35 d phase. We analyzed RXTE
observations of the Main-On of November 2002. Four different time intervals of
about 1 d duration were selected to provide a good coverage of a complete
Main-On. The intervals are centered at 35 d phase 0.03, 0.10, 0.15, and 0.20,
respectively. All spectral parameters show a strong modulation with pulse
phase. While the centroid energy of the cyclotron line follows roughly the
shape of the pulse profile, both the photon index and the iron line intensity
exhibit distinct minima around the peak of the X-ray pulse. With respect to
variations of the observed profiles with 35 d phase, we find that there is a
clear evolution of the shape of the pulse profiles (flux versus pulse phase), a
moderate increase of the maximum cyclotron line energy (found around pulse
phase 0.7), but no significant evolution of the shape of the pulse phase
profiles of the cyclotron line energy, the spectral power law index or the iron
line intensity. The variation of spectral parameters as a function of the pulse
phase provides important information about the system: 1. the disappearance of
the Fe line flux near the highest continuum flux may be an indication of a
hollow cone geometry of the accretion structure; ii. the apparent
non-dependence of the cyclotron line energy profiles on 35 d phase provides a
new possibility to test the model of free precession of the neutron star,
proposed to be responsible for the systematic variations in the pulse profiles.Comment: 10 pages, 11 figures, Accepted by A&A on the 22/12/201
A non-pulsating neutron star in the supernova remnant HESS J1731-347 / G353.6-0.7 with a carbon atmosphere
Context: The CCO candidate in the center of the supernova remnant shell HESS
J1731-347 / G353.6-0.7 shows no pulsations and exhibits a blackbody-like X-ray
spectrum. If the absence of pulsations is interpreted as evidence for the
emitting surface area being the entire neutron star surface, the assumption of
the measured flux being due to a blackbody emission translates into a source
distance that is inconsistent with current estimates of the remnant's distance.
Aims: With the best available observational data, we extended the pulse period
search down to a sub-millisecond time scale and used a carbon atmosphere model
to describe the X-ray spectrum of the CCO and to estimate geometrical
parameters of the neutron star. Methods: To search for pulsations we used data
of an observation of the source with XMM-Newton performed in timing mode. For
the spectral analysis, we used earlier XMM-Newton observations performed in
imaging mode, which permits a more accurate treatment of the background. The
carbon atmosphere models used to fit the CCO spectrum are computed assuming
hydrostatic and radiative equilibria and take into account pressure ionization
and the presence of spectral lines. Results: Our timing analysis did not reveal
any pulsations with a pulsed fraction above ~8% down to 0.2 ms. This finding
further supports the hypothesis that the emitting surface area is the entire
neutron star surface. The carbon atmosphere model provides a good fit to the
CCO spectrum and leads to a normalization consistent with the available
distance estimates of the remnant. The derived constraints on the mass and
radius of the source are consistent with reasonable values of the neutron star
mass and radius. After the CCO in Cas A, the CCO in HESS J1731-347 / G353.6-0.7
is the second object of this class for which a carbon atmosphere model provides
a consistent description of X-ray emission.Comment: 6 pages, 5 figures, accepted for publication in
Astronomy&Astrophysic
Swift/BAT measurements of the cyclotron line energy decay in the accreting neutron star Her X-1: indication of an evolution of the magnetic field?
Context: The magnetic field is a crucial ingredient of neutron stars. It
governs the physics of accretion and of the resulting high-energy emission in
accreting pulsars. Studies of the cyclotron resonant scattering features
(CRSFs) seen as absorption lines in the X-ray spectra of the pulsars permit
direct measuremets of the field strength. Aims: From an analysis of a number of
pointed observations with different instruments, the energy of CRSF, Ecyc, has
recently been found to decay in Her X-1, which is one of the best-studied
accreting pulsars. We present our analysis of a homogeneous and almost
uninterrupted monitoring of the line energy with Swift/BAT. Methods: We
analyzed the archival Swift/BAT observations of Her X-1 from 2005 to 2014. The
data were used to measure the CRSF energy averaged over several months.
Results: The analysis confirms the long-term decay of the line energy. The
downward trend is highly significant and consistent with the trend measured
with the pointed observations: dEcyc/dt ~-0.3 keV per year. Conclusions: The
decay of Ecyc either indicates a local evolution of the magnetic field
structure in the polar regions of the neutron star or a geometrical
displacement of the line-forming region due to long-term changes in the
structure of the X-ray emitting region. The shortness of the observed timescale
of the decay, -Ecyc/(dEcyc/dt) ~ 100 yr, suggests that trend reversals and/or
jumps of the line energy might be observed in the future.Comment: Accepted for publication in Astronomy&Astrophysic
Probing the stellar wind environment of Vela X-1 with MAXI
Vela X-1 is among the best studied and most luminous accreting X-ray pulsars.
The supergiant optical companion produces a strong radiatively-driven stellar
wind, which is accreted onto the neutron star producing highly variable X-ray
emission. A complex phenomenology, due to both gravitational and radiative
effects, needs to be taken into account in order to reproduce orbital spectral
variations. We have investigated the spectral and light curve properties of the
X-ray emission from Vela X-1 along the binary orbit. These studies allow to
constrain the stellar wind properties and its perturbations induced by the
compact object. We took advantage of the All Sky Monitor MAXI/GSC data to
analyze Vela X-1 spectra and light curves. By studying the orbital profiles in
the and keV energy bands, we extracted a sample of orbital light
curves (% of the total) showing a dip around the inferior
conjunction, i.e., a double-peaked shape. We analyzed orbital phase-averaged
and phase-resolved spectra of both the double-peaked and the standard sample.
The dip in the double-peaked sample needs cm to
be explained by absorption solely, which is not observed in our analysis. We
show how Thomson scattering from an extended and ionized accretion wake can
contribute to the observed dip. Fitted by a cutoff power-law model, the two
analyzed samples show orbital modulation of the photon index, hardening by
around the inferior conjunction, compared to earlier and later
phases, hinting a likely inadequacy of this model. On the contrary, including a
partial covering component at certain orbital phase bins allows a constant
photon index along the orbital phases, indicating a highly inhomogeneous
environment. We discuss our results in the framework of possible scenarios.Comment: 10 pages, 9 figures, accepted for publication in A&
Footprints in the wind of Vela X-1 traced with MAXI
The stellar wind around the compact object in luminous wind-accreting high
mass X-ray binaries is expected to be strongly ionized with the X-rays coming
from the compact object. The stellar wind of hot stars is mostly driven by
light absorption in lines of heavier elements, and X-ray photo-ionization
significantly reduces the radiative force within the so-called Stroemgren
region leading to wind stagnation around the compact object. In close binaries
like Vela X-1 this effect might alter the wind structure throughout the system.
Using the spectral data from Monitor of All-sky X-ray Image (MAXI), we study
the observed dependence of the photoelectric absorption as function of orbital
phase in Vela X-1, and find that it is inconsistent with expectations for a
spherically-symmetric smooth wind. Taking into account previous investigations
we develop a simple model for wind structure with a stream-like photoionization
wake region of slower and denser wind trailing the neutron star responsible for
the observed absorption curve.Comment: 5 pages, 3 figures, accepted in A&
Cyclotron lines in highly magnetized neutron stars
Cyclotron lines, also called cyclotron resonant scattering features (CRSF)
are spectral features, generally appearing in absorption, in the X-ray spectra
of objects containing highly magnetized neutron stars, allowing the direct
measurement of the magnetic field strength in these objects. Cyclotron features
are thought to be due to resonant scattering of photons by electrons in the
strong magnetic fields. The main content of this contribution focusses on
electron cyclotron lines as found in accreting X-ray binary pulsars (XRBP) with
magnetic fields on the order of several 1012 Gauss. Also, possible proton
cyclotron lines from single neutron stars with even stronger magnetic fields
are briefly discussed.With regard to electron cyclotron lines, we present an
updated list of XRBPs that show evidence of such absorption lines. The first
such line was discovered in a 1976 balloon observation of the accreting binary
pulsar Hercules X-1, it is considered to be the first direct measurement of the
magnetic field of a neutron star. As of today (mid 2018), we list 36 XRBPs
showing evidence of one ore more electron cyclotron absorption line(s). A few
have been measured only once and must be confirmed (several more objects are
listed as candidates). In addition to the Tables of objects, we summarize the
evidence of variability of the cyclotron line as a function of various
parameters (especially pulse phase, luminosity and time), and add a discussion
of the different observed phenomena and associated attempts of theoretical
modeling. We also discuss our understanding of the underlying physics of
accretion onto highly magnetized neutron stars. For proton cyclotron lines, we
present tables with seven neutron stars and discuss their nature and the
physics in these objects.Comment: 32 pages, 15 figures, 8 Tables, accepted by A&A 201
- …