43 research outputs found

    CCDC 750239: Experimental Crystal Structure Determination

    No full text
    UDUXOI : 2,26,51,54-Tetraethyl-6,24,30,48-tetramethoxy-9,12,15,18,21,33,36,39,42,45-decaoxaheptacyclo[27.19.3.35,25.03,8.022,53.027,32.046,50]tetrapentaconta-1(48),3,5,7,22,24,27,29,31,46,49,52-dodecaene methanol solvate. Work published 2014 via Cambridge Crystallographic Data Centre

    Development of functionalized SYBR green II related cyanine dyes for viral RNA detection

    No full text
    Fluorescent probes for sensing nucleic acids have found widespread use in the field of cell and molecular biology. However, probes combined with potential for post-synthetic conjugation, e.g. for intra-endosomal measurements of RNA, are unavailable. Herein we developed cyanine dyes that can be conjugated to viral capsid or other targets. First, we solved the crystal structure of SYBR Green II. The structural elucidation of this commonly used RNA probe provided the basis for synthesizing similar molecules with much desired function for post-synthetic conjugation. To address this need, cyanine dyes were prepared using an alternative synthesis protocol. All studied compounds showed considerable brightness upon binding to nucleic acids. However, regardless of the common chromophore on the dyes, the observed fluorescence emission intensities varied significantly, where methyl-substituted dye 1 gave values higher than SYBR Green II, whereas compounds 2–5 containing undecyl spacers had lower values. Studying the structure-activity relationship revealed the longer alkyl chains to induce slight perturbation in dye intercalation, as well as demanding larger binding area on the nucleic acid lattice, explaining these differences. To study the potential biological use of the dyes, the RNA genome of enterovirus echovirus 1 was studied in vitro with the probes. A novel method employing the low binding space requirement of 1 was developed to determine the single-to-double-stranded RNA ratio of a sample, whereas compound 4 was covalently bound to the viral capsid and used successfully to monitor the viral RNA release from within the capsid. The presented results open new possibilities for preparation and use of SYBR Green-based nucleic acid probes to further apply these compounds for increasingly demanding targeting in biological contexts.peerReviewe

    O-alkyl resorcarenes: where are we now?

    No full text
    This review describes the current position in the emerging field of direct synthesis of O-alkyl resorcarenes through the use of O-protected precursors. The use of this approach for the selective synthesis of the diastereoisomers of resorc[4]arenes, the synthesis of parent resorcarenes and pyrogalloranes and the preparation of chiral partially alkylated resorc[4]arenes are highlighted. The applications of such molecules, with regard to their role as ligand platforms, for binding of cations, organic electron acceptors and in chiral discrimination are discussed
    corecore