261 research outputs found

    Differential responsiveness of MET inhibition in non-small-cell lung cancer with altered CBL.

    Get PDF
    Casitas B-lineage lymphoma (CBL) is an E3 ubiquitin ligase and a molecule of adaptor that we have shown is important for non-small-cell lung cancer (NSCLC). We investigated if MET is a target of CBL and if enhanced in CBL-altered NSCLC. We showed that CBL wildtype cells have lower MET expression than CBL mutant cells. Ubiquitination of MET was also decreased in CBL mutant cells compared to wildtype cells. Mutant cells were also more sensitive to MET inhibitor SU11274 than wild-type cells. sh-RNA-mediated knockdown of CBL enhanced cell motility and colony formation in NSCLC cells, and these activities were inhibited by SU11274. Assessment of the phospho-kinome showed decreased phosphorylation of pathways involving MET, paxillin, EPHA2, and VEGFR. When CBL was knocked down in the mutant cell line H1975 (erlotinib-resistant), it became sensitive to MET inhibition. Our findings suggest that CBL status is a potential positive indicator for MET-targeted therapeutics in NSCLC

    RNA-Based Therapies: A Cog in the Wheel of Lung Cancer Defense

    Get PDF
    Lung cancer (LC) is a heterogeneous disease consisting mainly of two subtypes, non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), and remains the leading cause of death worldwide. Despite recent advances in therapies, the overall 5-year survival rate of LC remains less than 20%. The efficacy of current therapeutic approaches is compromised by inherent or acquired drug-resistance and severe off-target effects. Therefore, the identification and development of innovative and effective therapeutic approaches are critically desired for LC. The development of RNA-mediated gene inhibition technologies was a turning point in the field of RNA biology. The critical regulatory role of different RNAs in multiple cancer pathways makes them a rich source of targets and innovative tools for developing anticancer therapies. The identification of antisense sequences, short interfering RNAs (siRNAs), microRNAs (miRNAs or miRs), anti-miRs, and mRNA-based platforms holds great promise in preclinical and early clinical evaluation against LC. In the last decade, RNA-based therapies have substantially expanded and tested in clinical trials for multiple malignancies, including LC. This article describes the current understanding of various aspects of RNA-based therapeutics, including modern platforms, modifications, and combinations with chemo-/immunotherapies that have translational potential for LC therapies

    Immunohistochemical analysis of Bcl-2 protein in early squamous cell carcinoma of the bronchus treated with photodynamic therapy

    Get PDF
    Photodynamic therapy (PDT) in early squamous cell carcinoma of the bronchus has been shown to result in complete response (CR) and cure. However, local recurrence after PDT develops frequently even after complete remission. Because the effect of PDT had been reported to depend on apoptosis, and apoptosis is inhibited by bcl-2 protein, the relationship between the expression of bcl-2 protein and local recurrence after PDT was examined immunohistochemically. From 1983 to 1997, 50 patients with 59 early squamous cell carcinoma of the bronchus received PDT, and a CR was obtained in 43 lesions (72.8%). As there was no recurrence among tumours that were disease-free for more than 2 years, in this study the tumours were defined as cured when recurrence did not occur 2 years subsequent to the receiving of PDT. Of these CR lesions, 31 carcinomas (53.4%) resulted in a cure. Bcl-2 immunoreactivity was detected in 23 tumours (46.9%) and p53 immunoreactivity was detected in 22 tumours (44.9%). When all tumours were divided into either a large tumour with a longitudinal tumour length of 10 mm or more, or a small tumour with a length of less than 10 mm, the large tumour expressed more bcl-2 protein than the small tumour (P = 0.0155). The degree of bcl-2 expression was significantly related with tumour size (P = 0.0155). The expression of bcl-2 and p53 protein was not associated with the cure rate due to PDT. Tumour length and T status in TNM staging were significantly related to the cure by univariate analysis. T status was the only predictor of the cure according to mutivariate analysis. Of 42 CR lesions, the expression of neither bcl-2 nor p53 protein was associated with local recurrence; only T status was significantly associated (P = 0.008). The relationship between the expression of oncoprotein and local recurrence after PDT was not documented in this study. The success of PDT may depend on the exact assessment of tumour size under optimized PDT illumination. © 2000 Cancer Research Campaig

    Immunotherapy of lung cancer: An update

    Get PDF
    In Germany lung cancer is the leading cause of cancer-associated death in men. Surgery, chemotherapy and radiation may enhance survival of patients suffering from lung cancer but the enhancement is typically transient and mostly absent with advanced disease; eventually more than 90% of lung cancer patients will die of disease. New approaches to the treatment of lung cancer are urgently needed. Immunotherapy may represent one new approach with low toxicity and high specificity but implementation has been a challenge because of the poor antigenic characterization of these tumors and their ability to escape immune responses. Several different immunotherapeutic treatment strategies have been developed. This review examines the current state of development and recent advances with respect to non-specific immune stimulation, cellular immunotherapy ( specific and non-specific), therapeutic cancer vaccines and gene therapy for lung cancer. The focus is primarily placed on immunotherapeutic cancer treatments that are already in clinical trial or well progressed in preclinical studies. Although there seems to be a promising future for immunotherapy in lung cancer, presently there is not standard immunotherapy available for clinical routine

    MicroRNA-1 Attenuates the Growth and Metastasis of Small Cell Lung Cancer through CXCR4/FOXM1/RRM2 Axis

    Get PDF
    BACKGROUND: Small cell lung cancer (SCLC) is an aggressive lung cancer subtype that is associated with high recurrence and poor prognosis. Due to lack of potential drug targets, SCLC patients have few therapeutic options. MicroRNAs (miRNAs) provide an interesting repertoire of therapeutic molecules; however, the identification of miRNAs regulating SCLC growth and metastasis and their precise regulatory mechanisms are not well understood. METHODS: To identify novel miRNAs regulating SCLC, we performed miRNA-sequencing from donor/patient serum samples and analyzed the bulk RNA-sequencing data from the tumors of SCLC patients. Further, we developed a nanotechnology-based, highly sensitive method to detect microRNA-1 (miR-1, identified miRNA) in patient serum samples and SCLC cell lines. To assess the therapeutic potential of miR-1, we developed various in vitro models, including miR-1 sponge (miR-1Zip) and DOX-On-miR-1 (Tet-ON) inducible stable overexpression systems. Mouse models derived from intracardiac injection of SCLC cells (miR-1Zip and DOX-On-miR-1) were established to delineate the role of miR-1 in SCLC metastasis. In situ hybridization and immunohistochemistry were used to analyze the expression of miR-1 and target proteins (mouse and human tumor specimens), respectively. Dual-luciferase assay was used to validate the target of miR-1, and chromatin immunoprecipitation assay was used to investigate the protein-gene interactions. RESULTS: A consistent downregulation of miR-1 was observed in tumor tissues and serum samples of SCLC patients compared to their matched normal controls, and these results were recapitulated in SCLC cell lines. Gain of function studies of miR-1 in SCLC cell lines showed decreased cell growth and oncogenic signaling, whereas loss of function studies of miR-1 rescued this effect. Intracardiac injection of gain of function of miR-1 SCLC cell lines in the mouse models showed a decrease in distant organ metastasis, whereas loss of function of miR-1 potentiated growth and metastasis. Mechanistic studies revealed that CXCR4 is a direct target of miR-1 in SCLC. Using unbiased transcriptomic analysis, we identified CXCR4/FOXM1/RRM2 as a unique axis that regulates SCLC growth and metastasis. Our results further showed that FOXM1 directly binds to the RRM2 promoter and regulates its activity in SCLC. CONCLUSIONS: Our findings revealed that miR-1 is a critical regulator for decreasing SCLC growth and metastasis. It targets the CXCR4/FOXM1/RRM2 axis and has a high potential for the development of novel SCLC therapies. MicroRNA-1 (miR-1) downregulation in the tumor tissues and serum samples of SCLC patients is an important hallmark of tumor growth and metastasis. The introduction of miR-1 in SCLC cell lines decreases cell growth and metastasis. Mechanistically, miR-1 directly targets CXCR4, which further prevents FOXM1 binding to the RRM2 promoter and decreases SCLC growth and metastasis

    Dynamic Phenotypic Switching and Group Behavior Help Non-Small Cell Lung Cancer Cells Evade Chemotherapy

    Get PDF
    Drug resistance, a major challenge in cancer therapy, is typically attributed to mutations and genetic heterogeneity. Emerging evidence suggests that dynamic cellular interactions and group behavior also contribute to drug resistance. However, the underlying mechanisms remain poorly understood. Here, we present a new mathematical approach with game theoretical underpinnings that we developed to model real-time growth data of non-small cell lung cancer (NSCLC) cells and discern patterns in response to treatment with cisplatin. We show that the cisplatin-sensitive and cisplatin-tolerant NSCLC cells, when co-cultured in the absence or presence of the drug, display dynamic group behavior strategies. Tolerant cells exhibit a \u27persister-like\u27 behavior and are attenuated by sensitive cells; they also appear to \u27educate\u27 sensitive cells to evade chemotherapy. Further, tolerant cells can switch phenotypes to become sensitive, especially at low cisplatin concentrations. Finally, switching treatment from continuous to an intermittent regimen can attenuate the emergence of tolerant cells, suggesting that intermittent chemotherapy may improve outcomes in lung cancer
    corecore