17 research outputs found

    The role of the mitochondria and the endoplasmic reticulum contact sites in the development of the immune responses

    Get PDF
    Abstract Mitochondria and endoplasmic reticulum (ER) contact sites (MERCs) are dynamic modules enriched in subset of lipids and specialized proteins that determine their structure and functions. The MERCs regulate lipid transfer, autophagosome formation, mitochondrial fission, Ca2+ homeostasis and apoptosis. Since these functions are essential for cell biology, it is therefore not surprising that MERCs also play a critical role in organ physiology among which the immune system stands by its critical host defense function. This defense system must discriminate and tolerate host cells and beneficial commensal microorganisms while eliminating pathogenic ones in order to preserve normal homeostasis. To meet this goal, the immune system has two lines of defense. First, the fast acting but unspecific innate immune system relies on anatomical physical barriers and subsets of hematopoietically derived cells expressing germline-encoded receptors called pattern recognition receptors (PRR) recognizing conserved motifs on the pathogens. Second, the slower but very specific adaptive immune response is added to complement innate immunity. Adaptive immunity relies on another set of specialized cells, the lymphocytes, harboring receptors requiring somatic recombination to be expressed. Both innate and adaptive immune cells must be activated to phagocytose and process pathogens, migrate, proliferate, release soluble factors and destroy infected cells. Some of these functions are strongly dependent on lipid transfer, autophagosome formation, mitochondrial fission, and Ca2+ flux; this indicates that MERCs could regulate immunity

    Phenotypically defined subpopulations of circulating follicular helper T cells in common variable immunodeficiency

    No full text
    BackgroundCommon variable immunodeficiency (CVID) is characterized by low immunoglobulin G and IgA/IgM, decreased switched memory B cells, impaired response to vaccine, and an increased susceptibility to infections and autoimmunity. TFH cells play an important role in germinal center reaction where it supports isotype switching, somatic hypermutation, generation of memory B cells, and differentiation of B cells to plasma cells. The objective was to study the distribution of three subsets of TFH cells and their relationship with autoimmune diseases associated with CVID.MethodsTFH cells have been divided into TFH 1 (interleukin 21 [IL-21] and interferon γ), TFH 2 (IL-21 and IL-4), and TFH 17 (IL-21 and IL-17) cells. Mononuclear cells from 25 patients with CVID and age and gender-matched controls were stained with various monoclonal antibodies (anti-CD4 APC, anti-CXCR5 FITC, anti-CCR6 PerCP, and anti-CXCR3 PE) and isotype controls and analyzed for TFH 1 (CD4+ CXCR5+ CXCR3+ CCR6- ), TFH 2 (CD4+ CXCR5+ CXCR3- CCR6- ), and TFH 17 (CD4+ CXCR5+ CXCR3- CCR6+ ) cells by multicolor flow cytometry. Twenty thousand cells were acquired and analyzed by FlowJo software. Statistical analysis of comparison of patients and healthy controls was performed by paired t test using PRISM 7 software.ResultsTFH 2 and TFH 17 cells subpopulations of TFH cells were significantly decreased (P < .003 and P < .006, respectively) in CVID as compared with controls. No significant difference was observed in any of TFH cell subpopulations between CVID with and those without autoimmunity group.ConclusionAlterations in TFH cell subpopulation may play a role in defects in B cell compartment in CVID

    Common Variable Immunodeficiency

    No full text
    corecore