2,144 research outputs found

    Towards an understanding of Type Ia supernovae from a synthesis of theory and observations

    Full text link
    Motivated by the fact that calibrated light curves of Type Ia supernovae (SNe Ia) have become a major tool to determine the expansion history of the Universe, considerable attention has been given to, both, observations and models of these events over the past 15 years. Here, we summarize new observational constraints, address recent progress in modeling Type Ia supernovae by means of three-dimensional hydrodynamic simulations, and discuss several of the still open questions. It will be be shown that the new models have considerable predictive power which allows us to study observable properties such as light curves and spectra without adjustable non-physical parameters. This is a necessary requisite to improve our understanding of the explosion mechanism and to settle the question of the applicability of SNe Ia as distance indicators for cosmology. We explore the capabilities of the models by comparing them with observations and we show how such models can be applied to study the origin of the diversity of SNe Ia.Comment: 26 pages, 13 figures, Frontiers of Physics, in prin

    The LISA Gravitational Wave Foreground: A Study of Double White Dwarfs

    Get PDF
    Double white dwarfs are expected to be a source of confusion-limited noise for the future gravitational wave observatory LISA. In a specific frequency range, this 'foreground noise' is predicted to rise above the instrumental noise and hinder the detection of other types of signals, e.g., gravitational waves arising from stellar mass objects inspiraling into massive black holes. In many previous studies only detached populations of compact object binaries have been considered in estimating the LISA gravitational wave foreground signal. Here, we investigate the influence of compact object detached and Roche-Lobe Overflow Galactic binaries on the shape and strength of the LISA signal. Since >99% of remnant binaries which have orbital periods within the LISA sensitivity range are white dwarf binaries, we consider only these binaries when calculating the LISA signal. We find that the contribution of RLOF binaries to the foreground noise is negligible at low frequencies, but becomes significant at higher frequencies, pushing the frequency at which the foreground noise drops below the instrumental noise to >6 mHz. We find that it is important to consider the population of mass transferring binaries in order to obtain an accurate assessment of the foreground noise on the LISA data stream. However, we estimate that there still exists a sizeable number (~11300) of Galactic double white dwarf binaries which will have a signal-to-noise ratio >5, and thus will be potentially resolvable with LISA. We present the LISA gravitational wave signal from the Galactic population of white dwarf binaries, show the most important formation channels contributing to the LISA disc and bulge populations and discuss the implications of these new findings.Comment: ApJ accepted. 28 pages, 11 figures (low resolution), 5 tables, some new references and changed content since last astro-ph versio

    Type Ia Supernovae and Accretion Induced Collapse

    Full text link
    Using the population synthesis binary evolution code StarTrack, we present theoretical rates and delay times of Type Ia supernovae arising from various formation channels. These channels include binaries in which the exploding white dwarf reaches the Chandrasekhar mass limit (DDS, SDS, and helium-rich donor scenario) as well as the sub-Chandrasekhar mass scenario, in which a white dwarf accretes from a helium-rich companion and explodes as a SN Ia before reaching the Chandrasekhar mass limit. We find that using a common envelope parameterization employing energy balance with alpha=1 and lambda=1, the supernova rates per unit mass (born in stars) of sub-Chandrasekhar mass SNe Ia exceed those of all other progenitor channels at epochs t=0.7 - 4 Gyr for a burst of star formation at t=0. Additionally, the delay time distribution of the sub-Chandrasekhar model can be divided in to two distinct evolutionary channels: the `prompt' helium-star channel with delay times < 500 Myr, and the `delayed' double white dwarf channel with delay times > 800 Myr spanning up to a Hubble time. These findings are in agreement with recent observationally-derived delay time distributions which predict that a large number of SNe Ia have delay times < 1 Gyr, with a significant fraction having delay times < 500 Myr. We find that the DDS channel is also able to account for the observed rates of SNe Ia. However, detailed simulations of white dwarf mergers have shown that most of these mergers will not lead to SNe Ia but rather to the formation of a neutron star via accretion-induced collapse. If this is true, our standard population synthesis model predicts that the only progenitor channel which can account for the rates of SNe Ia is the sub-Chandrasekhar mass scenario, and none of the other progenitors considered can fully account for the observed rates.Comment: 6 pages, 1 figure, 1 table, to appear in proceedings for "Binary Star Evolution: Mass Loss, Accretion and Mergers

    Adding a subjective dimension to an ICF-based disability measure for people with multiple sclerosis: development and use of a measure for perception of disabilities

    Get PDF
    OBJECTIVE: The subjective dimension of disability, the perception of disability, is a dimension missing from the International Classification of Functioning, Disability and Health (ICF), and from health-related quality of life (HRQOL) instruments. However, it is a highly relevant dimension for clinical practice as perceived disability may identify care needs. We therefore developed a measure for this subjective dimension of disability in multiple sclerosis (MS) and examined the contribution of this dimension to QOL. METHOD: A measure named the Multiple Sclerosis Impact Profile-Disability Perception (MSIP-DP) was developed to reflect a person's perception of disabilities reported using the original MSIP-disability (MSIP-D) items. MS patients (n=530) completed both MSIP sections, the medical outcome study short form questionnaire (SF-36), the World Health Organisation Quality Of Life-BREF (WHOQOL-BREF) and questions concerning disease severity. The contribution of disability perception (DP) to QOL in MS was estimated using hierarchical multiple regression analyses after controlling for MS severity. RESULTS: Confirmative factor analysis confirmed the hypothesised disability perception domains that correspond with the related disability domains in the MSIP. DP scales yielded sufficient reliability. DP explained a unique and substantial part of the variance in QOL, particularly the perception of impairments in mental functions. DISCUSSION: Results indicated that the subjective dimension of functioning and health operationalised in the MSIP-DP is a relevant concept in explaining QOL in MS. In clinical practice psychological interventions addressing a patient's perception of disability, particularly of impairments in mental functioning, may contribute to QOL

    Type Ia Supernovae and Accretion Induced Collapse

    Full text link
    Using the population synthesis binary evolution code StarTrack, we present theoretical rates and delay times of Type Ia supernovae arising from various formation channels. These channels include binaries in which the exploding white dwarf reaches the Chandrasekhar mass limit (DDS, SDS, and helium-rich donor scenario) as well as the sub-Chandrasekhar mass scenario, in which a white dwarf accretes from a helium-rich companion and explodes as a SN Ia before reaching the Chandrasekhar mass limit. We find that using a common envelope parameterization employing energy balance with alpha=1 and lambda=1, the supernova rates per unit mass (born in stars) of sub-Chandrasekhar mass SNe Ia exceed those of all other progenitor channels at epochs t=0.7 - 4 Gyr for a burst of star formation at t=0. Additionally, the delay time distribution of the sub-Chandrasekhar model can be divided in to two distinct evolutionary channels: the `prompt' helium-star channel with delay times < 500 Myr, and the `delayed' double white dwarf channel with delay times > 800 Myr spanning up to a Hubble time. These findings are in agreement with recent observationally-derived delay time distributions which predict that a large number of SNe Ia have delay times < 1 Gyr, with a significant fraction having delay times < 500 Myr. We find that the DDS channel is also able to account for the observed rates of SNe Ia. However, detailed simulations of white dwarf mergers have shown that most of these mergers will not lead to SNe Ia but rather to the formation of a neutron star via accretion-induced collapse. If this is true, our standard population synthesis model predicts that the only progenitor channel which can account for the rates of SNe Ia is the sub-Chandrasekhar mass scenario, and none of the other progenitors considered can fully account for the observed rates.Comment: 6 pages, 1 figure, 1 table, to appear in proceedings for "Binary Star Evolution: Mass Loss, Accretion and Mergers

    Deflagrations in hybrid CONe white dwarfs: a route to explain the faint Type Iax supernova 2008ha

    Full text link
    Stellar evolution models predict the existence of hybrid white dwarfs (WDs) with a carbon-oxygen core surrounded by an oxygen-neon mantle. Being born with masses ~1.1 Msun, hybrid WDs in a binary system may easily approach the Chandrasekhar mass (MCh) by accretion and give rise to a thermonuclear explosion. Here, we investigate an off-centre deflagration in a near-MCh hybrid WD under the assumption that nuclear burning only occurs in carbon-rich material. Performing hydrodynamics simulations of the explosion and detailed nucleosynthesis post-processing calculations, we find that only 0.014 Msun of material is ejected while the remainder of the mass stays bound. The ejecta consist predominantly of iron-group elements, O, C, Si and S. We also calculate synthetic observables for our model and find reasonable agreement with the faint Type Iax SN 2008ha. This shows for the first time that deflagrations in near-MCh WDs can in principle explain the observed diversity of Type Iax supernovae. Leaving behind a near-MCh bound remnant opens the possibility for recurrent explosions or a subsequent accretion-induced collapse in faint Type Iax SNe, if further accretion episodes occur. From binary population synthesis calculations, we find the rate of hybrid WDs approaching MCh to be on the order of 1 percent of the Galactic SN Ia rate.Comment: 9 pages, 7 figures, 2 tables, accepted for publication in MNRA
    corecore