8,089 research outputs found

    Social Partnership - From Lemass to Cowen

    Get PDF
    The 2008 Countess Markievicz Memorial Lecture of the Irish Association for Industrial Relations. Delivered at Trinity College, Dublin, on 25 November 2008.

    “Collaborative Production” and the Irish Boom - Work Organisation, Partnership and Direct Involvement in Irish Workplaces

    Get PDF
    A significant strand of recent social-scientific writing on Ireland has assigned great importance to various forms of “collaborative production”: new forms of work organisation, partnership and direct employee involvement — even suggesting that their growing diffusion might have played a major role in Ireland’s exceptional economic performance during the 1990s. This paper draws on the University College Dublin national workplace survey of employee relations to present an assessment of the degree to which new modes of collaborative production have gained ground in Ireland during the 1990s. While collaborative production is undoubtedly significant in many Irish workplaces, “exclusionary” forms of decision-making are shown to dominate the postures of establishments towards the handling of change. Arguments pointing to the “transformation”, actual or imminent, of work practices and employment relations in Ireland are rejected. Change in Ireland is shown to have much in common with developments in other economies, particularly those characterised by “Anglo-American” institutional systems, which are not readily permeable to collaborative production in its various modes.

    Vortex spectrum in superfluid turbulence: interpretation of a recent experiment

    Full text link
    We discuss a recent experiment in which the spectrum of the vortex line density fluctuations has been measured in superfluid turbulence. The observed frequency dependence of the spectrum, f−5/3f^{-5/3}, disagrees with classical vorticity spectra if, following the literature, the vortex line density is interpreted as a measure of the vorticity or enstrophy. We argue that the disagrement is solved if the vortex line density field is decomposed into a polarised field (which carries most of the energy) and an isotropic field (which is responsible for the spectrum).Comment: Submitted for publication http://crtbt.grenoble.cnrs.fr/helio/GROUP/infa.html http://www.mas.ncl.ac.uk/~ncfb

    Near-infrared and Millimeter Constraints on the Nuclear Energy Source of the Infrared Luminous Galaxy NGC 4418

    Full text link
    We present near-infrared and millimeter investigations of the nucleus of the infrared luminous galaxy NGC 4418, which previous observations suggest possesses a powerful buried AGN. We found the following main results: (1) The infrared K-band spectrum shows CO absorption features at 2.3-2.4 micron owing to stars and very strong H2 emission lines. The luminosity ratios of H2 emission lines are suggestive of a thermal origin, and the equivalent width of the H2 1-0 S(1) line is the second largest observed to date in an external galaxy, after the well-studied strong H2-emitting galaxy NGC 6240. (2) The infrared L-band spectrum shows a clear polycyclic aromatic hydrocarbon (PAH) emission feature at 3.3 micron, which is usually found in star-forming galaxies. The estimated star-formation luminosity from the observed PAH emission can account for only a small fraction of the infrared luminosity. (3) Millimeter interferometric observations of the nucleus reveal a high HCN (1-0) to HCO+ (1-0) luminosity ratio of 1.8, as has been previously found in pure AGNs. (4) The measurements of HCN (1-0) luminosity using a single-dish millimeter telescope show that the HCN (1-0) to infrared luminosity ratio is slightly larger than the average, but within the scattered range, for other infrared luminous galaxies. All of these results can be explained by the scenario in which, in addition to energetically-insignificant, weakly-obscured star-formation at the surface of the nucleus, a powerful X-ray emitting AGN deeply buried in dust and high density molecular gas is present.Comment: 31 pages, 9 figures, Accepted for publication in Astronomical Journal (2004 November issue

    Induced fission of 240Pu

    Full text link
    We study the fission dynamics of 240Pu within an implementation of the Density Functional Theory (DFT) extended to superfluid systems and real-time dynamics. We demonstrate the critical role played by the pairing correlations. The evolution is found to be much slower than previously expected in this fully non-adiabatic treatment of nuclear dynamics, where there are no symmetry restrictions and all collective degrees of freedom (CDOF) are allowed to participate in the dynamics.Comment: 8 pages, 4 figures, talk given at The 6th International Conference on Fission and Properties of Neutron-Rich Nuclei, Sanibel Island, Florida, November 6-2 (2016

    Real time description of fission

    Full text link
    Using the time-dependent superfluid local density approximation, the dynamics of fission is investigated in real time from just beyond the saddle to fully separated fragments. Simulations produced in this fully microscopic framework can help to assess the validity of the current approaches to fission, and to obtain estimate of fission observables. In this contribution, we concentrate on general aspects of fission dynamics.Comment: Proceedings of the "15th Varenna Conference on Nuclear Reaction Mechanisms," Varenna, Italy, June 201

    Magnetoresistance in Disordered Graphene: The Role of Pseudospin and Dimensionality Effects Unraveled

    Get PDF
    We report a theoretical low-field magnetotransport study unveiling the effect of pseudospin in realistic models of weakly disordered graphene-based materials. Using an efficient Kubo computational method, and simulating the effect of charges trapped in the oxide, different magnetoconductance fingerprints are numerically obtained in system sizes as large as 0.3 micronmeter squared, containing tens of millions of carbon atoms. In two-dimensional graphene, a strong valley mixing is found to irreparably yield a positive magnetoconductance (weak localization), whereas crossovers from positive to a negative magnetoconductance (weak antilocalization) are obtained by reducing disorder strength down to the ballistic limit. In sharp contrast, graphene nanoribbons with lateral size as large as 10nm show no sign of weak antilocalization, even for very small disorder strength. Our results rationalize the emergence of a complex phase diagram of magnetoconductance fingerprints, shedding some new light on the microscopical origin of pseudospin effects.Comment: 8 pages, 5 figure

    Assessing foster youth\u27s readiness to prepare for adult community living

    Get PDF
    • 

    corecore