994 research outputs found

    Evidence for a continuum limit in causal set dynamics

    Get PDF
    We find evidence for a continuum limit of a particular causal set dynamics which depends on only a single ``coupling constant'' pp and is easy to simulate on a computer. The model in question is a stochastic process that can also be interpreted as 1-dimensional directed percolation, or in terms of random graphs.Comment: 24 pages, 19 figures, LaTeX, adjusted terminolog

    Investigating the association between children’s screen media exposure and vocabulary size in the UK

    Get PDF
    Children are growing up in a digital age with increasing exposure to television and touchscreen devices. We tested whether exposure to screen media is associated with children’s early language development. One hundred and thirty-one highly educated caregivers of UK children aged 6–36 months completed a media exposure questionnaire and vocabulary measure. 99% of children were read to daily, 82% watched television, and 49% used mobile touchscreen devices daily. Regression analyses revealed that time spent reading positively predicted vocabulary comprehension and production scores at 6–18 months, but time spent engaging with television or mobile touchscreen devices was not associated with vocabulary scores. Critically, correlations revealed that time spent reading or engaging with other non-screen activities was not offset by time spent engaging with television or mobile touchscreen devices. Thus, there was no evidence to suggest that screen media exposure adversely influenced vocabulary size in our sample of highly educated families with moderate media use

    Matter in Toy Dynamical Geometries

    Full text link
    One of the objectives of theories describing quantum dynamical geometry is to compute expectation values of geometrical observables. The results of such computations can be affected by whether or not matter is taken into account. It is thus important to understand to what extent and to what effect matter can affect dynamical geometries. Using a simple model, it is shown that matter can effectively mold a geometry into an isotropic configuration. Implications for "atomistic" models of quantum geometry are briefly discussed.Comment: 8 pages, 1 figure, paper presented at DICE 200

    Quantum Dynamics without the Wave Function

    Get PDF
    When suitably generalized and interpreted, the path-integral offers an alternative to the more familiar quantal formalism based on state-vectors, selfadjoint operators, and external observers. Mathematically one generalizes the path-integral-as-propagator to a {\it quantal measure} μ\mu on the space Ω\Omega of all ``conceivable worlds'', and this generalized measure expresses the dynamics or law of motion of the theory, much as Wiener measure expresses the dynamics of Brownian motion. Within such ``histories-based'' schemes new, and more ``realistic'' possibilities open up for resolving the philosophical problems of the state-vector formalism. In particular, one can dispense with the need for external agents by locating the predictive content of μ\mu in its sets of measure zero: such sets are to be ``precluded''. But unrestricted application of this rule engenders contradictions. One possible response would remove the contradictions by circumscribing the application of the preclusion concept. Another response, more in the tradition of ``quantum logic'', would accommodate the contradictions by dualizing Ω\Omega to a space of ``co-events'' and effectively identifying reality with an element of this dual space.Comment: plainTeX, 24 pages, no figures. To appear in a special volume of {\it Journal of Physics A: Mathematical and General} entitled ``The Quantum Universe'' and dedicated to Giancarlo Ghirardi on the occasion of his 70th birthday. Most current version is available at http://www.physics.syr.edu/~sorkin/some.papers/ (or wherever my home-page may be

    Spatial Hypersurfaces in Causal Set Cosmology

    Full text link
    Within the causal set approach to quantum gravity, a discrete analog of a spacelike region is a set of unrelated elements, or an antichain. In the continuum approximation of the theory, a moment-of-time hypersurface is well represented by an inextendible antichain. We construct a richer structure corresponding to a thickening of this antichain containing non-trivial geometric and topological information. We find that covariant observables can be associated with such thickened antichains and transitions between them, in classical stochastic growth models of causal sets. This construction highlights the difference between the covariant measure on causal set cosmology and the standard sum-over-histories approach: the measure is assigned to completed histories rather than to histories on a restricted spacetime region. The resulting re-phrasing of the sum-over-histories may be fruitful in other approaches to quantum gravity.Comment: Revtex, 12 pages, 2 figure

    Properties of the Volume Operator in Loop Quantum Gravity II: Detailed Presentation

    Full text link
    The properties of the Volume operator in Loop Quantum Gravity, as constructed by Ashtekar and Lewandowski, are analyzed for the first time at generic vertices of valence greater than four. The present analysis benefits from the general simplified formula for matrix elements of the Volume operator derived in gr-qc/0405060, making it feasible to implement it on a computer as a matrix which is then diagonalized numerically. The resulting eigenvalues serve as a database to investigate the spectral properties of the volume operator. Analytical results on the spectrum at 4-valent vertices are included. This is a companion paper to arXiv:0706.0469, providing details of the analysis presented there.Comment: Companion to arXiv:0706.0469. Version as published in CQG in 2008. More compact presentation. Sign factor combinatorics now much better understood in context of oriented matroids, see arXiv:1003.2348, where also important remarks given regarding sigma configurations. Subsequent computations revealed some minor errors, which do not change qualitative results but modify some numbers presented her

    Properties of the Volume Operator in Loop Quantum Gravity I: Results

    Full text link
    We analyze the spectral properties of the volume operator of Ashtekar and Lewandowski in Loop Quantum Gravity, which is the quantum analogue of the classical volume expression for regions in three dimensional Riemannian space. Our analysis considers for the first time generic graph vertices of valence greater than four. Here we find that the geometry of the underlying vertex characterizes the spectral properties of the volume operator, in particular the presence of a `volume gap' (a smallest non-zero eigenvalue in the spectrum) is found to depend on the vertex embedding. We compute the set of all non-spatially diffeomorphic non-coplanar vertex embeddings for vertices of valence 5--7, and argue that these sets can be used to label spatial diffeomorphism invariant states. We observe how gauge invariance connects vertex geometry and representation properties of the underlying gauge group in a natural way. Analytical results on the spectrum on 4-valent vertices are included, for which the presence of a volume gap is proved. This paper presents our main results; details are provided by a companion paper arXiv:0706.0382v1.Comment: 36 pages, 7 figures, LaTeX. See also companion paper arXiv:0706.0382v1. Version as published in CQG in 2008. See arXiv:1003.2348 for important remarks regarding the sigma configurations. Subsequent computations have revealed some minor errors, which do not change the qualitative results but modify some of the numbers presented her
    corecore