673 research outputs found

    Absence of ferromagnetism in V-implanted ZnO single crystals

    Full text link
    The structural and magnetic properties of V doped ZnO are presented. V ions were introduced into hydrothermal ZnO single crystals by ion implantation with fluences of 1.2*10^16 to 6*10^16 cm^-2. Post-implantation annealing was performed in high vacuum from 823 K to 1023 K. The ZnO host material still partly remains in a crystalline state after irradiation, and is partly recovered by annealing. The V ions show a thermal mobility as revealed by depth profile Auger electron spectroscopy. Synchrotron radiation x-ray diffraction revealed no secondary phase formation which indicates the substitution of V onto Zn site. However in all samples no pronounced ferromagnetism was observed down to 5 K by a superconducting quantum interference device magnetometer.Comment: 13 pages, 4 figs, MMM conference 2007, accepted by J. Appl. Phy

    Time-Resolved Measurement of a Charge Qubit

    Full text link
    We propose a scheme for monitoring coherent quantum dynamics with good time-resolution and low backaction, which relies on the response of the considered quantum system to high-frequency ac driving. An approximate analytical solution of the corresponding quantum master equation reveals that the phase of an outgoing signal, which can directly be measured in an experiment with lock-in technique, is proportional to the expectation value of a particular system observable. This result is corroborated by the numerical solution of the master equation for a charge qubit realized with a Cooper-pair box, where we focus on monitoring coherent oscillations.Comment: 4 pages, 3 figure

    Kinetic transition in the order–disorder transformation at a solid/liquid interface

    Full text link
    Phase-field analysis for the kinetic transition in an ordered crystal structure growing from an undercooled liquid is carried out. The results are interpreted on the basis of analytical and numerical solutions of equations describing the dynamics of the phase field, the long-range order parameter as well as the atomic diffusion within the crystal/liquid interface and in the bulk crystal. As an example, the growth of a binary A50B50 crystal is described, and critical undercoolings at characteristic changes of growth velocity and the long-range order parameter are defined. For rapidly growing crystals, analogies and qualitative differences are found in comparison with known non-equilibrium effects, particularly solute trapping and disorder trapping. The results and model predictions are compared qualitatively with results of the theory of kinetic phase transitions (Chernov 1968 Sov. Phys. JETP 26, 1182–1190) and with experimental data obtained for rapid dendritic solidification of congruently melting alloy with order–disorder transition (Hartmann et al. 2009 Europhys. Lett. 87, 40007 (doi:10.1209/0295-5075/87/40007)). This article is part of the theme issue ‘From atomistic interfaces to dendritic patterns’. © 2018 The Author(s) Published by the Royal Society. All rights reserved.Russian Science Foundation, RSF: 16-11-1009550WM1541Deutsche Forschungsgemeinschaft, DFGData accessibility. This article has no additional data. Authors’ contributions. All the authors contributed equally to the present research paper. Competing interests. The authors declare that they have no competing interests. Funding. This work was supported by the Russian Science Foundation (grant no. 16-11-10095), the German Space Center Space Management (under contract number 50WM1541) and the Deutsche Forschungsgemeinschaft (DFG) (under grant no. Re1261/8-2)

    Anomalous expansion and phonon damping due to the Co spin-state transition in RCoO_3 with R = La, Pr, Nd and Eu

    Full text link
    We present a combined study of the thermal expansion and the thermal conductivity of the perovskite series RCoO_3 with R = La, Nd, Pr and Eu. The well-known spin-state transition in LaCoO_3 is strongly affected by the exchange of the R ions due to their different ionic radii, i.e. chemical pressure. This can be monitored in detail by measurements of the thermal expansion, which is a highly sensitive probe for detecting spin-state transitions. The Co ions in the higher spin state act as additional scattering centers for phonons, therefore suppressing the phonon thermal conductivity. Based on the analysis of the interplay between spin-state transition and heat transport, we present a quantitative model of the thermal conductivity for the entire series. In PrCoO_3, an additional scattering effect is active at low temperatures. This effect arises from the crystal field splitting of the 4f multiplet, which allows for resonant scattering of phonons between the various 4f levels.Comment: 15 pages including 5 figure

    Relevance of the Heisenberg-Kitaev model for the honeycomb lattice iridates A_2IrO_3

    Full text link
    Combining thermodynamic measurements with theoretical density functional and thermodynamic calculations we demonstrate that the honeycomb lattice iridates A2IrO3 (A = Na, Li) are magnetically ordered Mott insulators where the magnetism of the effective spin-orbital S = 1/2 moments can be captured by a Heisenberg-Kitaev (HK) model with Heisenberg interactions beyond nearest-neighbor exchange. Experimentally, we observe an increase of the Curie-Weiss temperature from \theta = -125 K for Na2IrO3 to \theta = -33 K for Li2IrO3, while the antiferromagnetic ordering temperature remains roughly the same T_N = 15 K for both materials. Using finite-temperature functional renormalization group calculations we show that this evolution of \theta, T_N, the frustration parameter f = \theta/T_N, and the zig-zag magnetic ordering structure suggested for both materials by density functional theory can be captured within this extended HK model. Combining our experimental and theoretical results, we estimate that Na2IrO3 is deep in the magnetically ordered regime of the HK model (\alpha \approx 0.25), while Li2IrO3 appears to be close to a spin-liquid regime (0.6 < \alpha < 0.7).Comment: Version accepted for publication in PRL. Additional DFT and thermodynamic calculations have been included. 6 pages of supplementary material include

    Thermal Conductivity, Thermopower, and Figure of Merit of La_{1-x}Sr_xCoO_3

    Full text link
    We present a study of the thermal conductivity k and the thermopower S of single crystals of La_{1-x}Sr_xCoO_3 with 0<= x <= 0.3. For all Sr concentrations La_{1-x}Sr_xCoO_3 has rather low k values, whereas S strongly changes as a function of x. We discuss the influence of the temperature- and the doping-induced spin-state transitions of the Co ions on both, S and k. From S, k, and the electrical resistivity rho we derive the thermoelectric figure of merit Z=S^2/(k*rho). For intermediate Sr concentrations we find notably large values of Z indicating that Co-based materials could be promising candidates for thermoelectric cooling.Comment: 7 pages, 5 figures included, submitted to Phys. Rev.

    Der Gehalt an freien Aminosäuren in Traubenmosten von gesunden und edelfaulen Beeren verschiedener Rebsorten

    Get PDF
    Durch Befall mit Botrytis cinerea wird die Konzentration der freien Aminosäuren in Traubenbeeren verringert. In Traubenmasten aus edelfaulem Lesegut ist der Gehalt an freien Aminosäuren gegenüber gesi,indem Lesegut um 33-86% reduziert. Die einzelnen Aminosäuren zeigen hierbei ein unterschiedliches Verhalten: Während z. B. der Anteil des Lysins an der Gesamtaminosäuren-Konzentration bei edelfaulem Material stets höher ist als bei gesundem, verhält sich Isoleucin entgegengesetzt. Isoleucin und Leucin werden vom Pilz ähnlich gut verwertet. Dagegen ist in edelfaulen Beeren im Verhältnis zum Prolin mehr Glutaminsäure und im Bezug auf Leucin mehr Lysin enthalten als in gesunden

    Fe-implanted ZnO: Magnetic precipitates versus dilution

    Full text link
    Nowadays ferromagnetism is often found in potential diluted magnetic semiconductor systems. However, many authors argue that the observed ferromagnetism stems from ferromagnetic precipitates or spinodal decomposition rather than from carrier mediated magnetic impurities, as required for a diluted magnetic semiconductor. In the present paper we answer this question for Fe-implanted ZnO single crystals comprehensively. Different implantation fluences and temperatures and post-implantation annealing temperatures have been chosen in order to evaluate the structural and magnetic properties over a wide range of parameters. Three different regimes with respect to the Fe concentration and the process temperature are found: 1) Disperse Fe2+^{2+} and Fe3+^{3+} at low Fe concentrations and low processing temperatures, 2) FeZn2_2O4_4 at very high processing temperatures and 3) an intermediate regime with a co-existence of metallic Fe (Fe0^0) and ionic Fe (Fe2+^{2+} and Fe3+^{3+}). Ferromagnetism is only observed in the latter two cases, where inverted ZnFe2_2O4_4 and α\alpha-Fe nanocrystals are the origin of the observed ferromagnetic behavior, respectively. The ionic Fe in the last case could contribute to a carrier mediated coupling. However, their separation is too large to couple ferromagnetically due to the lack of p-type carrier. For comparison investigations of Fe-implanted epitaxial ZnO thin films are presented.Comment: 14 pages, 17 figure
    corecore