16 research outputs found
RNase 7 Contributes to the Cutaneous Defense against Enterococcus faecium
Background: Human skin is able to mount a fast response against invading microorganisms by the release of antimicrobial proteins such as the ribonuclease RNase 7. Because RNase 7 exhibits high activity against Enterococcus faecium the aim of this study was to further explore the role of RNase 7 in the cutaneous innate defense system against E. faecium. Methodology/Principal Findings: Absolute quantification using real-time PCR and ELISA revealed that primary keratinocytes expressed high levels of RNase 7. Immunohistochemistry showed RNase 7 expression in all epidermal layers of the skin with an intensification in the upper more differentiated layers. Furthermore, RNase 7 was secreted by keratinocytes in vitro and in vivo in a site-dependent way. RNase 7 was still active against E. faecium at low pH (5.5) or high NaCl (150 mM) concentration and the bactericidal activity of RNase 7 against E. faecium required no ribonuclease activity as shown by recombinant RNase 7 lacking enzymatic activity. To further explore the role of RNase 7 in cutaneous defense against E. faecium, we investigated whether RNase 7 contributes to the E. faecium killing activity of skin extracts derived from stratum corneum. Treatment of the skin extract with an RNase 7 specific antibody, which neutralizes the antimicrobial activity of RNase 7, diminished its E. faecium killing activity. Conclusions/Significance: Our data indicate that RNase 7 contributes to the E. faecium-killing activity of skin extracts an
Inter-diffusion of Plasmonic Metals and Phase Change Materials
This work investigates the problematic diffusion of metal atoms into phase
change chalcogenides, which can destroy resonances in photonic devices.
Interfaces between Ge2Sb2Te5 and metal layers were studied using X-ray
reflectivity (XRR) and reflectometry of metal-Ge2Sb2Te5 layered stacks. The
diffusion of metal atoms influences the crystallisation temperature and optical
properties of phase change materials. When Au, Ag, Al, W structures are
directly deposited on Ge2Sb2Te5 inter-diffusion occurs. Indeed, Au forms AuTe2
layers at the interface. Diffusion barrier layers, such as Si3N4 or stable
diffusionless plasmonic materials, such as TiN, can prevent the interfacial
damage. This work shows that the interfacial diffusion must be considered when
designing phase change material tuned photonic devices, and that TiN is the
most suitable plasmonic material to interface directly with Ge2Sb2Te5.Comment: 23 pages, 8 figures, articl
High-pressure single-crystal study on AlPO<sub>4</sub> with synchrotron radiation
A single-crystal study on AlPO4 was performed at 2.90 (7) GPa with synchrotron radiation using a diamond-anvil cell with a beryllium gasket. For the data collection the radiation wavelength of only 0.54 Å, was chosen to minimize the absorption of X-rays in the pressure cell. The diffracted intensity was high enough to measure even weak reflections with sufficient counting statistics. The refined structural parameters are in good agreement with those determined from data collected with a conventional X-ray tube.</jats:p
De novo significant role of Pancreas-derived stem cells in the in vivo epidermalization of skin wounds
Pancreas derived stem cells significantly improve the in vivo epidermalization of wounds in scaffold based skin regeneration
Recommended from our members
Human hair follicle epithelium has an antimicrobial defence system that includes the inducible antimicrobial peptide psoriasin (S100A7) and RNase 7
Background Hair follicle (HF) ostia represent a potential port of microbial entry into the skin. However, they rarely show clinical signs of infection. This suggests the presence of local, efficient, antimicrobial defence systems, which may include antimicrobial peptides (AMPs). Objectives We determined the presence and distribution of the major AMPs, RNase 7 and psoriasin (S100A7), in human scalp HFs. We investigated whether HF production of these AMPs was induced by prototypic microbial products and proinflammatory cytokines, i.e. interferon (IFN)-γ. Finally, we examined whether the classical pathways for AMP induction, such as toll-like receptor (TLR)4 and TLR5 expression, are present in human HFs and up-regulated after stimulation with bacterium-associated ligands. Methods Cryosections from fresh or organ-cultured full-thickness normal human scalp skin treated with lipopolysaccharide (LPS), flagellin, protein A, lipoteichoic acid (LTA) or IFN-γ were stained for psoriasin and RNase 7 immunoreactivity (IR) as well as for TLR4 and TLR5. In addition, outer root sheath cell culture and semiquantitative analysis of mRNA expression levels of RNase 7 and psoriasin were performed. Results Specific RNase 7 IR was present throughout the entire HF outer root sheath in situ and in cell culture, whereas psoriasin IR was present only in the most distal compartment and not detectable in cultured ORS cells. Upon treatment with Gram-positive (LTA, protein A) or Gram-negative bacterial (LPS, flagellin) cell wall components, or with the cytokine IFN-γ, the IR of both psoriasin and RNase 7 was modified. TLR4 and TLR5 IR was detected in the normal HF epithelium and were upregulated after treatment with their respective ligand. The mRNA analysis confirmed the immunohistochemistry results. Conclusions This pilot study suggests that normal human scalp HF epithelium possesses a functional antimicrobial defence system, which includes the AMPs RNase 7 and psoriasin, and TLRs, and that these are induced by classical microbial products. © 2009 British Association of Dermatologists
