880 research outputs found

    Associations between disease severity, coping and dimensions of health-related quality of life in patients admitted for elective coronary angiography – a cross sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In patients with suspected coronary artery disease (CAD), the overall aim was to analyse the relationships between disease severity and both mental and physical dimensions of health related quality of life (HRQOL) using a modified version of the Wilson and Cleary model.</p> <p>Methods</p> <p>Using a cross-sectional design, 753 patients (74% men), mean age 62 years, referred for elective cardiac catheterisation were included. The measures included 1) physiological factors 2) symptoms (disease severity, self-reported symptoms, anxiety and depression 3) self-reported functional status, 4) coping, 5) perceived disease burden, 6) general health perception and 7) overall quality of life. To analyse relationships, we performed linear and ordinal logistic regressions.</p> <p>Results</p> <p>CAD and left ventricular ejection fraction (LVEF) were significantly associated with symptoms of angina pectoris and dyspnea. CAD was not related to symptoms of anxiety and depression, but less depression was found in patients with low LVEF. Angina pectoris and dyspnea were both associated with impaired physical function, and dyspnea was also negatively related to social function. Overall, less perceived burden and better overall QOL were observed in patients using more confronting coping strategy.</p> <p>Conclusion</p> <p>The present study demonstrated that data from cardiac patients to a large extent support the suggested model by Wilson and Cleary.</p

    Instanton approach to the Langevin motion of a particle in a random potential

    Full text link
    We develop an instanton approach to the non-equilibrium dynamics in one-dimensional random environments. The long time behavior is controlled by rare fluctuations of the disorder potential and, accordingly, by the tail of the distribution function for the time a particle needs to propagate along the system (the delay time). The proposed method allows us to find the tail of the delay time distribution function and delay time moments, providing thus an exact description of the long-time dynamics. We analyze arbitrary environments covering different types of glassy dynamics: dynamics in a short-range random field, creep, and Sinai's motion.Comment: 4 pages, 1 figur

    Magnetic Flux Expulsion in the Powerful Superbubble Explosions and the Alpha-Omega Dynamo

    Full text link
    The possibility of the magnetic flux expulsion from the Galaxy in the superbubble (SB) explosions, important for the Alpha-Omega dynamo, is considered. Special emphasis is put on the investigation of the downsliding of the matter from the top of the shell formed by the SB explosion which is able to influence the kinematics of the shell. It is shown that either Galactic gravity or the development of the Rayleigh-Taylor instabilities in the shell limit the SB expansion, thus, making impossible magnetic flux expulsion. The effect of the cosmic rays in the shell on the sliding is considered and it is shown that it is negligible compared to Galactic gravity. Thus, the question of possible mechanism of flux expulsion in the Alpha-Omega dynamo remains open.Comment: MNRAS, in press, 11 pages, 9 figure

    Noise storm continua: power estimates for electron acceleration

    Full text link
    We use a generic stochastic acceleration formalism to examine the power LinL_{\rm in} (ergs1{\rm erg s^{-1}}) input to nonthermal electrons that cause noise storm continuum emission. The analytical approach includes the derivation of the Green's function for a general second-order Fermi process, and its application to obtain the particular solution for the nonthermal electron distribution resulting from the acceleration of a Maxwellian source in the corona. We compare LinL_{\rm in} with the power LoutL_{\rm out} observed in noise storm radiation. Using typical values for the various parameters, we find that Lin102326L_{\rm in} \sim 10^{23-26} ergs1{\rm erg s^{-1}}, yielding an efficiency estimate ηLout/Lin\eta \equiv L_{\rm out}/L_{\rm in} in the range 10^{-10} \lsim \eta \lsim 10^{-6} for this nonthermal acceleration/radiation process. These results reflect the efficiency of the overall process, starting from electron acceleration and culminating in the observed noise storm emission.Comment: Accepted for publication in Solar Physic

    Quality of life in female myocardial infarction survivors: a comparative study with a randomly selected general female population cohort

    Get PDF
    Background: A substantial burden associated with MI has been reported. Thus, how survivors experience their quality of life (QOL) is now being given increasing attention. However, few studies have involved women and a comparison with the general population. The aims of this study were to determine the QOL of female MI survivors, to investigate whether their QOL differed from that of the general population, and to evaluate the clinical significance of the findings. Methods: Two cross-sectional surveys were performed; on female MI survivors and the general Norwegian population. The MI survey included women aged 62–80 years, three months to five years after their MI. One hundred and forty-five women responded, yielding a response rate of 60%. A subset of women in the same age range (n = 156) was drawn from a study of 1893 randomly selected Norwegian citizens. QOL was measured in both groups with the World Health Organization Quality of Life Instrument Abbreviated (WHOQOL-BREF). Results: The majority (54%) of the female MI survivors presented with ST-elevation in their ECG, 31% received thrombolysis, and 38% had reduced left ventricular ejection fraction. Female MI survivors reported significantly lower satisfaction with general health (p = 0.020) and overall QOL (p = 0.017) than women from the general population. This was also the case for the physical and environmental QOL domains (p < 0.001), but not for the psychological and social relationship domains. Estimated effect sizes between the two groups of participants ranged from 0.1 to -0.6. Conclusion: The burden of MI significantly affects the physical health of elderly women. Still, female MI survivors fare as well as the general female population on psychosocial QOL domains. Action should be taken not only to support women's physical needs but also to reinforce their strengths in order to maintain optimal QOL

    Stochastic Cellular Automata Model for Stock Market Dynamics

    Get PDF
    In the present work we introduce a stochastic cellular automata model in order to simulate the dynamics of the stock market. A direct percolation method is used to create a hierarchy of clusters of active traders on a two dimensional grid. Active traders are characterised by the decision to buy, (+1), or sell, (-1), a stock at a certain discrete time step. The remaining cells are inactive,(0). The trading dynamics is then determined by the stochastic interaction between traders belonging to the same cluster. Most of the stylized aspects of the financial market time series are reproduced by the model.Comment: 17 pages and 7 figure

    Semiclassical treatment of logarithmic perturbation theory

    Get PDF
    The explicit semiclassical treatment of logarithmic perturbation theory for the nonrelativistic bound states problem is developed. Based upon \hbar-expansions and suitable quantization conditions a new procedure for deriving perturbation expansions for the one-dimensional anharmonic oscillator is offered. Avoiding disadvantages of the standard approach, new handy recursion formulae with the same simple form both for ground and exited states have been obtained. As an example, the perturbation expansions for the energy eigenvalues of the harmonic oscillator perturbed by λx6\lambda x^{6} are considered.Comment: 6 pages, LATEX 2.09 using IOP style

    Inelastic Processes in the Collision of Relativistic Highly Charged Ions with Atoms

    Get PDF
    A general expression for the cross sections of inelastic collisions of fast (including relativistic) multicharged ions with atoms which is based on the genelazition of the eikonal approximation is derived. This expression is applicable for wide range of collision energy and has the standard nonrelativistic limit and in the ultrarelativistic limit coincides with the Baltz's exact solution ~\cite{art13} of the Dirac equation. As an application of the obtained result the following processes are calculated: the excitation and ionization cross sections of hydrogenlike atom; the single and double excitation and ionization of heliumlike atom; the multiply ionization of neon and argon atoms; the probability and cross section of K-vacancy production in the relativistic U92+U91+U^{92+} - U^{91+} collision. The simple analytic formulae for the cross sections of inelastic collisions and the recurrence relations between the ionization cross sections of different multiplicities are also obtained. Comparison of our results with the experimental data and the results of other calculations are given.Comment: 25 pages, latex, 7 figures avialable upon request,submitted to PR

    Logarithmic perturbation theory for quasinormal modes

    Get PDF
    Logarithmic perturbation theory (LPT) is developed and applied to quasinormal modes (QNMs) in open systems. QNMs often do not form a complete set, so LPT is especially convenient because summation over a complete set of unperturbed states is not required. Attention is paid to potentials with exponential tails, and the example of a Poschl-Teller potential is briefly discussed. A numerical method is developed that handles the exponentially large wavefunctions which appear in dealing with QNMs.Comment: 24 pages, 4 Postscript figures, uses ioplppt.sty and epsfig.st

    Turbulence in the Solar Atmosphere: Manifestations and Diagnostics via Solar Image Processing

    Full text link
    Intermittent magnetohydrodynamical turbulence is most likely at work in the magnetized solar atmosphere. As a result, an array of scaling and multi-scaling image-processing techniques can be used to measure the expected self-organization of solar magnetic fields. While these techniques advance our understanding of the physical system at work, it is unclear whether they can be used to predict solar eruptions, thus obtaining a practical significance for space weather. We address part of this problem by focusing on solar active regions and by investigating the usefulness of scaling and multi-scaling image-processing techniques in solar flare prediction. Since solar flares exhibit spatial and temporal intermittency, we suggest that they are the products of instabilities subject to a critical threshold in a turbulent magnetic configuration. The identification of this threshold in scaling and multi-scaling spectra would then contribute meaningfully to the prediction of solar flares. We find that the fractal dimension of solar magnetic fields and their multi-fractal spectrum of generalized correlation dimensions do not have significant predictive ability. The respective multi-fractal structure functions and their inertial-range scaling exponents, however, probably provide some statistical distinguishing features between flaring and non-flaring active regions. More importantly, the temporal evolution of the above scaling exponents in flaring active regions probably shows a distinct behavior starting a few hours prior to a flare and therefore this temporal behavior may be practically useful in flare prediction. The results of this study need to be validated by more comprehensive works over a large number of solar active regions.Comment: 26 pages, 7 figure
    corecore