26,031 research outputs found
Objectives of permanent lunar bases
Permanent manned lunar surface and orbiting base
A thin rivulet or ridge subject to a uniform transverse shear stress at its free surface due to an external airflow
We use the lubrication approximation to analyse three closely related problems involving a thin rivulet or ridge (i.e. a two-dimensional droplet) of fluid subject to a prescribed uniform transverse shear stress at its free surface due to an external airflow, namely a rivulet draining under gravity down a vertical substrate, a rivulet driven by a longitudinal shear stress at its free surface, and a ridge on a horizontal substrate, and find qualitatively similar behaviour for all three problems. We show that, in agreement with previous numerical studies, the free surface profile of an equilibrium rivulet/ridge with pinned contact lines is skewed as the shear stress is increased from zero, and that there is a maximum value of the shear stress beyond which no solution with prescribed semi-width is possible. In practice, one or both of the contact lines will de-pin before this maximum value of the shear stress is reached, and so we consider situations in which the rivulet/ridge de-pins at one or both contact lines. In the case of de-pinning only at the advancing contact line, the rivulet/ridge is flattened and widened as the shear stress is increased from its critical value, and there is a second maximum value of the shear stress beyond which no solution with a prescribed advancing contact angle is possible. In contrast, in the case of de-pinning only at the receding contact line, the rivulet/ridge is thickened and narrowed as the shear stress is increased from its critical value, and there is a solution with a prescribed receding contact angle for all values of the shear stress. In general, in the case of de-pinning at both contact lines there is a critical âyieldâ value of the shear stress beyond which no equilibrium solution is possible and the rivulet/ridge will evolve unsteadily. In an Appendix we show that an equilibrium rivulet/ridge with prescribed flux/area is quasi-statically stable to two-dimensional perturbations
A thin rivulet or ridge subject to a uniform transverse\ud shear stress at its free surface due to an external airflow
We use the lubrication approximation to analyse three closely related problems involving a thin rivulet or ridge (i.e. a two-dimensional droplet) of fluid subject to a prescribed uniform transverse shear stress at its free surface due to an external airflow, namely a rivulet draining under gravity down a vertical substrate, a rivulet driven by a longitudinal shear stress at its free surface, and a ridge on a horizontal substrate, and find qualitatively similar behaviour for all three problems. We show that, in agreement with previous numerical studies, the free surface profile of an equilibrium rivulet/ridge with pinned contact lines is skewed as the shear stress is increased from zero, and that there is a maximum value of the shear stress beyond which no solution with prescribed semi-width is possible. In practice, one or both of the contact lines will de-pin before this maximum value of the shear stress is reached, and so we consider situations in which the rivulet/ridge de-pins at one or both contact lines. In the case of de-pinning only at the advancing contact line, the rivulet/ridge is flattened and widened as the shear stress is increased from its critical value, and there is a second maximum value of the shear stress beyond which no solution with a prescribed advancing contact angle is possible. In contrast, in the case of de-pinning only at the receding contact line, the rivulet/ridge is thickened and narrowed as the shear stress is increased from its critical value, and there is a solution with a prescribed receding contact angle for all values of the shear stress. In general, in the case of de-pinning at both contact lines there is a critical âyieldâ value of the shear stress beyond which no equilibrium solution is possible and the rivulet/ridge will evolve unsteadily. In an Appendix we show that an equilibrium rivulet/ridge with prescribed flux/area is quasi-statically stable to two-dimensional perturbations
Evaluation of MOSTAS computer code for predicting dynamic loads in two bladed wind turbines
Calculated dynamic blade loads were compared with measured loads over a range of yaw stiffnesses of the DOE/NASA Mod-O wind turbine to evaluate the performance of two versions of the MOSTAS computer code. The first version uses a time-averaged coefficient approximation in conjunction with a multi-blade coordinate transformation for two bladed rotors to solve the equations of motion by standard eigenanalysis. The second version accounts for periodic coefficients while solving the equations by a time history integration. A hypothetical three-degree of freedom dynamic model was investigated. The exact equations of motion of this model were solved using the Floquet-Lipunov method. The equations with time-averaged coefficients were solved by standard eigenanalysis
IUE archived spectra
The International Ultraviolet Explorer (IUE) Satellite has been in continuous operation since January 26, 1978. To date, approximately 65,000 spectra have been stored in an archive at Goddard Space Flight Center in Greenbelt, MD. A number of procedures have been generated to facilitate access to the data in the IUE spectral archive. This document describes the procedures which include on-line quick look of the displays, search of an observation data base for selected observations, and several methods for ordering data from the archive
Polyphosphate granule biogenesis is temporally and functionally tied to cell cycle exit during starvation in Pseudomonas aeruginosa
Polyphosphate (polyP) granule biogenesis is an ancient and ubiquitous starvation response in bacteria. Although the ability to make polyP is important for survival during quiescence and resistance to diverse environmental stresses, granule genesis is poorly understood. Using quantitative microscopy at high spatial and temporal resolution, we show that granule genesis in Pseudomonas aeruginosa is tightly organized under nitrogen starvation. Following nucleation as many microgranules throughout the nucleoid, polyP granules consolidate and become transiently spatially organized during cell cycle exit. Between 1 and 3 h after nitrogen starvation, a minority of cells have divided, yet the total granule number per cell decreases, total granule volume per cell dramatically increases, and individual granules grow to occupy diameters as large as âŒ200 nm. At their peak, mature granules constitute âŒ2% of the total cell volume and are evenly spaced along the long cell axis. Following cell cycle exit, granules initially retain a tight spatial organization, yet their size distribution and spacing relax deeper into starvation. Mutant cells lacking polyP elongate during starvation and contain more than one origin. PolyP promotes cell cycle exit by functioning at a step after DNA replication initiation. Together with the universal starvation alarmone (p)ppGpp, polyP has an additive effect on nucleoid dynamics and organization during starvation. Notably, cell cycle exit is temporally coupled to a net increase in polyP granule biomass, suggesting that net synthesis, rather than consumption of the polymer, is important for the mechanism by which polyP promotes completion of cell cycle exit during starvation
Measuring the quantum efficiency of single radiating dipoles using a scanning mirror
Using scanning probe techniques, we show the controlled manipulation of the
radiation from single dipoles. In one experiment we study the modification of
the fluorescence lifetime of a single molecular dipole in front of a movable
silver mirror. A second experiment demonstrates the changing plasmon spectrum
of a gold nanoparticle in front of a dielectric mirror. Comparison of our data
with theoretical models allows determination of the quantum efficiency of each
radiating dipole.Comment: 4 pages, 4 figure
Online information needs of cancer patients and their organizations
Increasingly patients, relatives and carers are accessing health information via the internet. However, the health profession and people affected by cancer are becoming concerned with the quality of that information. A European survey was conducted under the auspices of the FP7 European Commission funded Eurocancercoms project1 during the period September 2010âMarch 2011. Its aim was to assess current online information needs of people with cancer particularly those who seek information using online social media technologies and the internet more broadly. A literature review was undertaken to gain a greater understanding of health seeking behaviour regarding cancer patientsâ information needs and patient preferences for accessing different formats and media. This was used to inform the design and validation of online pan-European, multi-lingual questionnaires distributed via patient organizations and via specific Eurocancercoms partner organizations. This paper presents the results of this survey and suggests recommendations to be incorporated into the design of the online platform, ecancerHub, one of the intended outcomes of the Eurocancercoms project following this research. People want a wide variety of easy to find, easy to understand accurate information about cancer and how it is likely to impact on their everyday lives and on those close to them. They differ in the amount and detail of the information they would like and on their ability to identify quality information and understand it sufficiently to base their health-care decisions on. The majority of respondents raised the issue of quality of information and many requested recommendations of websites by the people who usually influence them most, the health professionals involved in their care
Minimal size of a barchan dune
Barchans are dunes of high mobility which have a crescent shape and propagate
under conditions of unidirectional wind. However, sand dunes only appear above
a critical size, which scales with the saturation distance of the sand flux [P.
Hersen, S. Douady, and B. Andreotti, Phys. Rev. Lett. {\bf{89,}} 264301 (2002);
B. Andreotti, P. Claudin, and S. Douady, Eur. Phys. J. B {\bf{28,}} 321 (2002);
G. Sauermann, K. Kroy, and H. J. Herrmann, Phys. Rev. E {\bf{64,}} 31305
(2001)]. It has been suggested by P. Hersen, S. Douady, and B. Andreotti, Phys.
Rev. Lett. {\bf{89,}} 264301 (2002) that this flux fetch distance is itself
constant. Indeed, this could not explain the proto size of barchan dunes, which
often occur in coastal areas of high litoral drift, and the scale of dunes on
Mars. In the present work, we show from three dimensional calculations of sand
transport that the size and the shape of the minimal barchan dune depend on the
wind friction speed and the sand flux on the area between dunes in a field. Our
results explain the common appearance of barchans a few tens of centimeter high
which are observed along coasts. Furthermore, we find that the rate at which
grains enter saltation on Mars is one order of magnitude higher than on Earth,
and is relevant to correctly obtain the minimal dune size on Mars.Comment: 11 pages, 10 figure
Evaluation of positive G sub Z tolerance following simulated weightlessness (bedrest)
The magnitude of physiologic changes which are known to occur in human subjects exposed to varying levels of + G sub Z acceleration following bed rest simulation of weightlessness was studied. Bed rest effects were documented by fluid and electrolyte balance studies, maximal exercise capability, 70 deg passive tilt and lower body negative pressure tests and the ability to endure randomly prescribed acceleration profiles of +2G sub Z, +3G sub Z, and +4G sub Z. Six healthy male volunteers were studied during two weeks of bed rest after adequate control observations, followed by two weeks of recovery, followed by a second two-week period of bed rest at which time an Air Force cutaway anti-G suit was used to determine its effectiveness as a countermeasure for observed cardiovascular changes during acceleration. Results showed uniform and significant changes in all measured parameters as a consequence of bed rest including a reduced ability to tolerate +G sub Z acceleration. The use of anti-G suits significantly improved subject tolerance to all G exposures and returned measured parameters such as heart rate and blood pressure towards or to pre-bed-rest (control) values in four of the six cases
- âŠ