283,772 research outputs found

    Evidence for A Parsec-scale Jet from The Galactic Center Black Hole: Interaction with Local Gas

    Full text link
    Despite strong physical reasons that they should exist and decades of search, jets from the Galactic Center Black Hole, Sgr A*, have not yet been convincingly detected. Based on high-resolution Very Large Array images and ultra-deep imaging-spectroscopic data produced by the Chandra X-ray Observatory, we report new evidence for the existence of a parsec-scale jet from Sgr A*, by associating a linear feature G359.944-0.052, previously identified in X-ray images of the Galactic Center, with a radio shock front on the Eastern Arm of the Sgr A West HII region. We show that the shock front can be explained in terms of the impact of a jet having a sharp momentum peak along the Galaxy's rotation axis, whereas G359.944-0.052, a quasi-steady feature with a power-law spectrum, can be understood as synchrotron radiation from shock-induced ultrarelativistic electrons cooling in a finite post-shock region downstream along the jet path. Several interesting implications of the jet properties are discussed.Comment: 33 pages, 7 figures; Accepted for publication in The Astrophysical Journa

    Robust Logic Gates and Realistic Quantum Computation

    Full text link
    The composite rotation approach has been used to develop a range of robust quantum logic gates, including single qubit gates and two qubit gates, which are resistant to systematic errors in their implementation. Single qubit gates based on the BB1 family of composite rotations have been experimentally demonstrated in a variety of systems, but little study has been made of their application in extended computations, and there has been no experimental study of the corresponding robust two qubit gates to date. Here we describe an application of robust gates to Nuclear Magnetic Resonance (NMR) studies of approximate quantum counting. We find that the BB1 family of robust gates is indeed useful, but that the related NB1, PB1, B4 and P4 families of tailored logic gates are less useful than initially expected.Comment: 6 pages RevTex4 including 5 figures (3 low quality to save space). Revised at request of referee and incorporting minor corrections and updates. Now in press at Phys Rev

    Barrier modification in sub-barrier fusion reactions using Wong formula with Skyrme forces in semiclassical formalism

    Full text link
    We obtain the nuclear proximity potential by using semiclassical extended Thomas Fermi (ETF) approach in Skyrme energy density formalism (SEDF), and use it in the extended â„“\ell-summed Wong formula under frozen density approximation. This method has the advantage of allowing the use of different Skyrme forces, giving different barriers. Thus, for a given reaction, we could choose a Skyrme force with proper barrier characteristics, not-requiring extra ``barrier lowering" or ``barrier narrowing" for a best fit to data. For the 64^{64}Ni+100^{100}Mo reaction, the â„“\ell-summed Wong formula, with effects of deformations and orientations of nuclei included, fits the fusion-evaporation cross section data exactly for the force GSkI, requiring additional barrier modifications for forces SIII and SV. However, the same for other similar reactions, like 58,64^{58,64}Ni+58,64^{58,64}Ni, fits the data best for SIII force. Hence, the barrier modification effects in â„“\ell-summed Wong expression depends on the choice of Skyrme force in extended ETF method.Comment: INPC2010, Vancouver, CANAD

    Signal processing in high speed OTDM networks

    Get PDF
    This paper presents the design and experimental results of an optical packet-switching testbed capable of performing message routing with single wavelength TDM packet bit rates as high as 100 Gb/s
    • …
    corecore