498 research outputs found

    Cosmic ray propagation in the local superbubble

    Get PDF
    It is suggested that a ring of HI gas lying in the galactic plane is part of a supershell which formed some 3 x to the 7th power years ago. The consequences of a closed magnetic supershell for cosmic ray propagation are examined and it is concluded that there is no evidence which precludes the production and trapping of cosmic rays in such a region. A consequence of superbubble confinement is that the mean age of cosmic rays would be independent of energy. This can be tested by high energy observations of the isotopic composition of Be

    Computation of Mass Outflow Rate from Relativistic Quasi-Spherical Accretion onto Black Holes

    Get PDF
    We compute mass outflow rate Rm˙R_{\dot m} from relativistic matter accreting quasi-spherically onto Schwarzschild black holes. Taking the pair-plasma pressure mediated shock surface as the {\it effective} boundary layer (of the black hole) from where bulk of the outflow is assumed to be generated, computation of this rate is done using combinations of exact transonic inflow and outflow solutions. We find that Rm˙R_{\dot m} depends on the initial parameters of the flow, the polytropic index of matter, the degree of compression of matter near the shock surface and on the location of the shock surface itself. We thus not only study the variation of the mass outflow rate as a function of various physical parameters governing the problem but also provide a sufficiently plausible estimation of this rate.Comment: 6 twocoloumn pages with 5 figures. mn.sty used. Accepted for publication in MNRA

    TenTen: A New Array of Multi-TeV Imaging Cherenkov Telescopes

    Get PDF
    The exciting results from H.E.S.S. point to a new population of gamma-ray sources at energies E > 10 TeV, paving the way for future studies and new discoveries in the multi-TeV energy range. Connected with these energies is the search for sources of PeV cosmic-rays (CRs) and the study of multi-TeV gamma-ray production in a growing number of astrophysical environments. TenTen is a proposed stereoscopic array (with a suggested site in Australia) of modest-sized (10 to 30m^2) Cherenkov imaging telescopes with a wide field of view (8 to 10deg diameter) optimised for the E~10 to 100 TeV range. TenTen will achieve an effective area of ~10 km^2 at energies above 10 TeV. We outline here the motivation for TenTen and summarise key performance parameters.Comment: 4 pages, 2 figures, proceedings of the 30th ICRC, Merida, Mexico, 200

    Numerical simulations of string networks in the Abelian-Higgs model

    Get PDF
    We present the results of a field theory simulation of networks of strings in the Abelian Higgs model. Starting from a random initial configuration we show that the resulting vortex tangle approaches a self-similar regime in which the length density of lines of zeros of ϕ\phi reduces as t2t^{-2}. We demonstrate that the network loses energy directly into scalar and gauge radiation. These results support a recent claim that particle production, and not gravitational radiation, is the dominant energy loss mechanism for cosmic strings. This means that cosmic strings in Grand Unified Theories are severely constrained by high energy cosmic ray fluxes: either they are ruled out, or an implausibly small fraction of their energy ends up in quarks and leptons.Comment: 4pp RevTeX, 3 eps figures, clarifications and new results included, to be published in Phys. Rev. Let

    BL Lac Contribution to the Extragalactic Gamma-Ray Background

    Get PDF
    Very high energy gamma-rays from blazars traversing cosmological distances through the metagalactic radiation field can convert into electron-positron pairs in photon-photon collisions. The converted gamma-rays initiate electromagnetic cascades driven by inverse-Compton scattering off the microwave background photons. Using a model for the time-dependent metagalactic radiation field consistent with all currently available far-infrared-to-optical data, we calculate the cascade contribution from faint, unresolved high- and low-peaked blazars to the extragalactic gamma-ray background as measured by EGRET. For low-peaked blazars, we adopt a spectral index consistent with the mean spectral index of EGRET detected blazars, and the luminosity function determined by Chiang and Mukherjee (1998). For high-peaked blazars, we adopt template spectra matching prototype sources observed with air-Cherenkov telescopes up to 30 TeV, and a luminosity function based on X-ray measurements. The low number of about 20 for nearby high-peaked blazars with a flux exceeding 10^-11 cm^-2 s^-1 above 300 GeV inferred from the luminosity function is consistent with the results from air-Cherenkov telescope observations. Including the cascade emission from higher redshifts, the total high-peaked blazar contribution to the observed gamma-ray background at GeV energies can account up to about 30.Comment: 8 pages, 7 figures, accepted by A&A, final versio

    Propagation of ultra-high energy protons in the nearby universe

    Get PDF
    We present a new calculation of the propagation of protons with energies above 101910^{19} eV over distances of up to several hundred Mpc. The calculation is based on a Monte Carlo approach using the event generator SOPHIA for the simulation of hadronic nucleon-photon interactions and a realistic integration of the particle trajectories in a random extragalactic magnetic field. Accounting for the proton scattering in the magnetic field affects noticeably the nucleon energy as a function of the distance to their source and allows us to give realistic predictions on arrival energy, time delay, and arrival angle distributions and correlations as well as secondary particle production spectra.Comment: 12 pages, 9 figures, ReVTeX. Physical Review D, accepte

    A lower bound on the local extragalactic magnetic field

    Get PDF
    Assuming that the hard gamma-ray emission of Cen A is a result of synchrotron radiation of ultra-relativistic electrons, we derive a lower bound on the local extragalactic magnetic field, B>108B> 10^{-8} G. This result is consistent with (and close to) upper bounds on magnetic fields derived from consideration of cosmic microwave background distortions and Faraday rotation measurements.Comment: Includes extensive discussion of particle acceleration above 10^20 eV in the hot spot-like region of Cen

    Limits on models of the ultrahigh energy cosmic rays based on topological defects

    Get PDF
    An erratum exists for this article. Please see the description link below for details.Using the propagation of ultrahigh energy nucleons, photons, and electrons in the universal radiation backgrounds, we obtain limits on the luminosity of topological defect scenarios for the origin of the highest energy cosmic rays. The limits are set as a function of the mass of the X particles emitted by the cosmic strings or other defects, the cosmological evolution of the topological defects, and the strength of the extragalactic magnetic fields. The existing data on the cosmic ray spectrum and on the isotropic 100 MeV gamma-ray background limit significantly the parameter space in which topological defects can generate the flux of the highest energy cosmic rays, and rule out models with the standard X-particle mass of 10¹⁶GeV and higher.R. J. Protheroe and Todor Stane

    Extremely High Energy Neutrinos, Neutrino Hot Dark Matter, and the Highest Energy Cosmic Rays

    Get PDF
    Extremely high energy (up to 10**(22) eV) cosmic neutrino beams initiate high energy particle cascades in the background of relic neutrinos from the Big Bang. We perform numerical calculations to show that such cascades could contribute more than 10% to the observed cosmic ray flux above 10**(19) eV if neutrinos have masses in the electron volt range. The required intensity of primary neutrinos could be consistent with astrophysical models for their production if the maximum neutrino energy reaches to 10**(22) eV and the massive neutrino dark matter is locally clustered. Future observations of ultra high energy cosmic rays will lead to an indirect but practical search for neutrino dark matter.Comment: 4 latex pages, 3 postscript figures included, uses revtex.sty and psfig.sty. Submitted to Physical Review Letter

    On the cosmic ray bound for models of extragalactic neutrino production

    Get PDF
    We obtain the maximum diffuse neutrino intensity predicted by hadronic photoproduction models of the type which have been applied to the jets of active galactic nuclei or gamma ray bursts. For this, we compare the proton and gamma ray fluxes associated with hadronic photoproduction in extragalactic neutrino sources with the present experimental upper limit on cosmic ray protons and the extragalactic gamma ray background, employing a transport calculation of energetic protons traversing cosmic photon backgrounds. We take into account the effects of the photon spectral shape in the sources on the photoproduction process, cosmological source evolution, the optical depth for cosmic ray ejection, and discuss the possible effects of magnetic fields in the vicinity of the sources. For photohadronic neutrino sources which are optically thin to the emission of neutrons we find that the cosmic ray flux imposes a stronger bound than the extragalactic gamma ray background in the energy range between 10^5 GeV and 10^11 GeV, as previously noted by Waxman & Bahcall (1999). We also determine the maximum contribution from the jets of active galactic nuclei, using constraints set to their neutron opacity by gamma-ray observations. This present upper limit is consistent with the jets of active galactic nuclei producing the extragalactic gamma ray background hadronically, but we point out future observations in the GeV-to-TeV regime could lower this limit. We also briefly discuss the contribution of gamma ray bursts to ultra-high energy cosmic rays as it can be inferred from possible observations or limits on their correlated neutrino fluxes.Comment: 16 pages, includes 7 figures, using REVtex3.1, accepted for publication in Phys.Rev.D after minor revision
    corecore