418 research outputs found

    Numerical Investigation of Plasma Flows in Magnetic Nozzles

    Get PDF
    Magnetic nozzles are used in many laboratory experiments in which plasma flows are to be confined, cooled. accelerated, or directed. At present, however, there is no generally accepted theoretical description that explains the phenomena of plasma detachment from an externally-imposed magnetic field. This is an important problem in the field of plasma propulsion, where the ionized gas must detach from the applied, solenoidal magnetic field to realize thrust production. In this paper we simulate a plasma flowing in the presence of an applied magnetic field using a multidimensional numerical simulation tool that includes theoretical models of the various dispersive and dissipative processes present in the plasma. This is an extension of the simulation tool employed in previous work by Sankaran et al. The new tool employs the same formulation of the governing equation set. but retains the axial and radial components of magnetic field and the azimuthal component of velocity that were neglected in other works. We aim to compare the computational results with the various proposed magnetic nozzle detachment theories to develop an understanding of the physical mechanisms that cause detachment. An applied magnetic field topology is obtained using a magnetostatic field solver and this field is superimposed on the time-dependent magnetic field induced in the plasma to provide a self-consistent field description. The applied magnetic field and model geometry match those found in experiments by Kurtki and Okada. We model this geometry because there ts a substantial amount of experimental data that can be compared to our computations, allowing for validation of the model. In addition, comparison of the simulation results with the experimentally obtained plasma parameters will provide insight into the mechanisms that lead to plasma detachment, revealing how the 3 scale with different input parameters

    Iodine Satellite Propellant Feed Clog-Clearing Demonstration Testing

    Get PDF
    Experiments are conducted to quantify the formation and clearing of iodine clogs in an iodine feed system. Deposits in the low-pressure portion of the system near the exit to vacuum appear to be relatively small in extent and incomplete in blocking the flow, and they are relatively easy to remove with the re-application of heating, disappearing in minutes. Clogs forming upstream, nearer to the higher-pressure propellant tank, appear to completely block the flow, are much larger in spatial extent, and form much more rapidly than the low-pressure blockages. Significantly more effort is required to remove upstream deposits

    Liquid-Metal Pump Technologies for Nuclear Surface Power

    Get PDF
    Multiple liquid-metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to test prototypical space nuclear system components. Conduction, induction, and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated with incorporation into a reactor system. The thermoelectric pump is recommended for inclusion in the planned system at NASA MSFC based on its relative simplicity, low power supply mass penalty, flight heritage, and the promise of increased pump efficiency over earlier flight pump designs through the use of skutterudite thermoelectric elements

    Comparison Between MAD-IPA Thrust Stand Measurements and Performance Modeling

    Get PDF
    The high specific impulse values associated with electric propulsion (EP) that allow for higher payload fractions than conventional, chemical propulsion are achieved by the acceleration of ionized propellant (plasma) by electromagnetic body forces. The lifetime of many EP devices is limited by electrode erosion caused by direct plasma-electrode interaction, while the efficiency is often limited by, among other thruster-specific factors, the available power in space. The efficiency can be increased during higher power operation since the amount of power required to ionize the propellant is fixed and decreases as a percentage of the increased input power. Pulsed inductive plasma accelerators [1-3] are a potentially elegant solution to the problems of high power demands and electrode erosion. The former is addressed in the pulsed nature of these devices, which allows for instantaneous operation on the order of megawatts while requiring a continuous supply on the order of only kilowatts, while the latter is addressed by inductive coupling of the thruster to ionized propellant. These devices operate by rapidly (on the order of microseconds) discharging stored energy at a given pulse repetition rate through a coil creating time-varying magnetic and electric fields that cause ionization, current formation and acceleration of propellant away from the coil. While the inductive (contact-less) nature of the energy transfer from the thruster to the propellant alleviates the problem of erosion and enables the use of in-situ and storable propellants incompatible with metallic electrodes, it places high voltage demands (on the order of tens of kilovolts) on the energy storage system to achieve propellant ionization

    Thrust Stand Measurements of the Conical Theta Pinch FARAD Thruster

    Get PDF
    It is found that the impulse of a pulsed inductive plasma thruster utilizing preionization is maximized for a particular ratio of the stored energy in the capacitor to the injected propellant mass. The fact that the impulse depends on the ratio of the initial stored energy to injected propellant mass agrees with previous current sheet studies, supporting the idea that a Townsend-like breakdown process strongly influences current sheet formation, and in turn, current sheet formation strongly affects the operational efficiency of the device. The optimum in half cone angle of the inductive coil can be explained in terms of a balance between the direct axial acceleration and the radial pinching contribution to thrust. From the trends in these data we conclude that operation at the correct ratio of capacitor energy to propellant mass is essential for efficient operation of pulsed inductive plasma thrusters employing a preionized propellant

    Design of a Microwave Assisted Discharge Inductive Plasma Accelerator

    Get PDF
    The design and construction of a thruster that employs electrodeless plasma preionization and pulsed inductive acceleration is described. Preionization is achieved through an electron cyclotron resonance discharge that produces a weakly-ionized plasma at the face of a conical theta pinch-shaped inductive coil. The presence of the preionized plasma allows for current sheet formation at lower discharge voltages than those employed in other pulsed inductive accelerators that do not employ preionization. The location of the electron cyclotron resonance discharge is controlled through the design of the applied magnetic field in the thruster. Finite element analysis shows that there is an arrangement of permanent magnets that yields a small volume of resonant magnetic field at the coil face. Preionization in the resonant zone leads to current sheet formation at the coil face, which minimizes the initial inductance of the pulse circuit and maximizes the potential electrical efficiency of the accelerator. A magnet assembly was constructed around an inductive coil to provide structural support to the selected arrangement of neodymium magnets. Measured values of the resulting magnetic field compare favorably with the finite element model

    Computational Validation of a Two-Dimensional Semi-Empirical Model for Inductive Coupling in a Conical Pulsed Inductive Plasma Thruster

    Get PDF
    A two-dimensional semi-empirical model of pulsed inductive thrust efficiency is developed to predict the effect of such a geometry on thrust efficiency. The model includes electromagnetic and gas-dynamic forces but excludes energy conversion from radial motion to axial motion, with the intention of characterizing thrust efficiency loss mechanisms that result from a conical versus a at inductive coil geometry. The range of conical pulsed inductive thruster geometries to which this model can be applied is explored with the use of finite element analysis. A semi-empirical relation for inductance as a function of current sheet radial and axial position is the limiting feature of the model, restricting the applicability as a function of half cone angle to a range from ten degrees to about 60 degrees. The model is nondimensionalized, yielding a set of dimensionless performance scaling parameters. Results of the model indicate that radial current sheet motion changes the axial dynamic impedance parameter at which thrust efficiency is maximized. This shift indicates that when radial current sheet motion is permitted in the model longer characteristic circuit timescales are more efficient, which can be attributed to a lower current sheet axial velocity as the plasma more rapidly decouples from the coil through radial motion. Thrust efficiency is shown to increase monotonically for decreasing values of the radial dynamic impedance parameter. This trend indicates that to maximize the radial decoupling timescale should be long compared to the characteristic circuit timescale

    Thrust Stand Measurements Using Alternative Propellants in the Microwave Assisted Discharge Inductive Plasma Accelerator

    Get PDF
    Storable propellants (for example water, ammonia, and hydrazine) are attractive for deep space propulsion due to their naturally high density at ambient interplanetary conditions, which obviates the need for a cryogenic/venting system. Water in particular is attractive due to its ease of handling and availability both terrestrially and extra-terrestrially. While many storable propellants are reactive and corrosive, a propulsion scheme where the propellant is insulated from vulnerable (e.g. metallic) sections of the assembly would be well-suited to process these otherwise incompatible propellants. Pulsed inductive plasma thrusters meet this criterion because they can be operated without direct propellant-electrode interaction. During operation of these devices, electrical energy is capacitively stored and then discharged through an inductive coil creating a time-varying current in the coil that interacts with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, many pulsed inductive plasma thrusters require high pulse energies to inductively ionize propellant. The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA) is a pulsed inductive plasma thruster that addressees this issue by partially ionizing propellant inside a conical inductive coil before the main current pulse via an electron cyclotron resonance (ECR) discharge. The ECR plasma is produced using microwaves and a static magnetic field from a set of permanent magnets arranged to create a thin resonance region along the inner surface of the coil, restricting plasma formation, and in turn current sheet formation, to a region where the magnetic coupling between the plasma and the theta-pinch coil is high. The use of a conical theta-pinch coil also serves to provide neutral propellant containment and plasma plume focusing that is improved relative to the more common planar geometry of the Pulsed Inductive Thruster (PIT). In this paper, we describe thrust stand measurements performed to evaluate the specific impulse and thrust efficiency of the MAD-IPA for a variety of propellants. Propellants tested include both widely-used, non-reactive noble gases like argon, and rarely-used propellants such as water, hydrazine and ammonia. Dependencies of impulse data on propellant species are discussed in the context of the current sheet formation and electromagnetic plasma acceleration processes

    Thrust Stand Measurements of a Conical Inductive Pulsed Plasma Thruster

    Get PDF
    Inductive Pulsed Plasma Thrusters (iPPT) are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10 .. 100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, inductive pulsed plasma thrusters can suffer from both high pulse energy requirements imposed by the voltage demands of inductive propellant ionization, and low propellant utilization efficiencies. A conical coil geometry may o er higher propellant utilization efficiency over that of a at inductive coil, however an increase in propellant utilization may be met with a decrease in axial electromagnetic acceleration, and in turn, a decrease in the total axially-directed kinetic energy imparted to the propellant
    corecore